Calvin K V,Bond-Lamberty B ,Clarke L E,Edmonds J A,Eom J ,Hartin C A,Kim S H,Kyle G Page,Link R P,Moss R H,McJeon H C,Patel P L,Smith S J,Waldhoff S T,Wise M A  2017 , The SSP4: A world of deepening inequality, Global Environmental Change, doi:10.1016/j.gloenvcha.2016.06.010.

Iyer GC, and JA Edmonds. 2017, “Emission scenarios: Explaining differences.” Nature Climate Change, 7:99-100, doi:10.1038/nclimate3200.

Muratori M ,Kheshgi H ,Mignone B K,Clarke L E,McJeon H C,Edmonds J A  2017.  “Carbon Capture and Storage across Fuels and Sectors in Energy System Transformation Pathways”  International Journal of Greenhouse Gas Control 57():34-41. 10.1016/j.ijggc.2016.11.026

Rafique R, J Xia, O Hararuk, G Leng, GR Asrar, and Y Luo.  2017.  “Comparing the performance of three land models in global C cycle simulations: A detailed structural analysis.”  Land Degradation and Development 28(2):524-533.  doi:10.1002/ldr.2506

Sarofim M, ST Waldhoff, and SC Anenberg.  2017.  “Valuing the ozone-related health benefits of methane emissions controls.”  Environmental and Resource Economics 66(1):45-63.  doi:10.1007/s10640-015-9937-6


Abbott, B. W. et al. (2016), Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment, Environmental Research Letters, 11(3), 34014, doi:10.1088/1748-9326/11/3/034014.

Aldy, J. et al. (2016), Economic tools to promote transparency and comparability in the Paris Agreement, Nature Climate Change, doi:10.1038/nclimate3106.

Alexander, P. et al. (2016), Assessing uncertainties in land cover projections, Global Change Biology, doi:10.1111/gcb.13447.

Asrar, G., R. Moss, and K. Jacobs (2016), Challenges and Opportunities in Earth-Human Systems Research, Eos, 97, doi:10.1029/2016EO050919.

Bauer, N., J. Hilaire, R. J. Brecha, J. Edmonds, K. Jiang, E. Kriegler, H.-H. Rogner, and F. Sferra (2016a), Assessing global fossil fuel availability in a scenario framework, Energy, 111, 580–592, doi:10.1016/

Bauer, N. et al. (2016b), Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives, Global Environmental Change, doi:10.1016/j.gloenvcha.2016.07.006.

Bond-Lamberty, B., D. Epron, J. Harden, M. E. Harmon, F. Hoffman, J. Kumar, A. David McGuire, and R. Vargas (2016a), Estimating heterotrophic respiration at large scales: challenges, approaches, and next steps, Ecosphere, 7(6), e01380, doi:10.1002/ecs2.1380.

Bond-Lamberty, B., A. P. Smith, and V. Bailey (2016b), Running an open experiment: transparency and reproducibility in soil and ecosystem science, Environmental Research Letters, 11(8), 84004, doi:10.1088/1748-9326/11/8/084004.

Bond-Lamberty, B., H. Bolton, S. Fansler, A. Heredia-Langner, C. Liu, L. A. McCue, J. Smith, and V. Bailey (2016c), Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment, edited by K. Treseder, PLOS ONE, 11(3), e0150599, doi:10.1371/journal.pone.0150599.

Bond-Lamberty B ,Smith A P,Bailey V L  2016.  “Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils”  Biogeosciences 13():6669-6681. doi:10.5194/bg-13-6669-2016.

Buizer, J. L. et al. (2016), Building a sustained climate assessment process, Climatic Change, 135(1), 23–37, doi:10.1007/s10584-015-1501-4.

Cai, X., Z.-L. Yang, J. B. Fisher, X. Zhang, M. Barlage, and F. Chen (2016), Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions, Geoscientific Model Development, 9(1), 1–15, doi:10.5194/gmd-9-1-2016.

Calderón, S., A. C. Alvarez, A. M. Loboguerrero, S. Arango, K. Calvin, T. Kober, K. Daenzer, and K. Fisher-Vanden (2016), Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets, Energy Economics, 56, 575–586, doi:10.1016/j.eneco.2015.05.010.

Calvin, K., S. Rose, M. Wise, H. McJeon, L. Clarke, and J. Edmonds (2015), Global climate, energy, and economic implications of international energy offsets programs, Climatic Change, 133(4), 583–596, doi:10.1007/s10584-015-1482-3.

Calvin, K. V., R. Beach, A. Gurgel, M. Labriet, and A. M. Loboguerrero Rodriguez (2016b), Agriculture, forestry, and other land-use emissions in Latin America, Energy Economics, 56, 615–624, doi:10.1016/j.eneco.2015.03.020.

Capela Lourenço, T., A. Rovisco, S. Dessai, R. Moss, and A. Petersen (2015), Editorial introduction to the special issue on Uncertainty and Climate Change Adaptation, Climatic Change, 132(3), 369–372, doi:10.1007/s10584-015-1444-9.

Clarke, L. et al. (2016), Long-term abatement potential and current policy trajectories in Latin American countries, Energy Economics, 56, 513–525, doi:10.1016/j.eneco.2016.01.011.

Di Sbroiavacca, N., G. Nadal, F. Lallana, J. Falzon, and K. Calvin (2016), Emissions reduction scenarios in the Argentinean Energy Sector, Energy Economics, 56, 552–563, doi:10.1016/j.eneco.2015.03.021.

Edelenbosch, O. Y. et al. (2016), Decomposing passenger transport futures: Comparing results of global integrated assessment models, Transportation Research Part D: Transport and Environment, doi:10.1016/j.trd.2016.07.003.

Fawcett, A. A. et al. (2015), Can Paris pledges avert severe climate change?, Science, 350(6265), 1168–1169, doi:10.1126/science.aad5761.

Gao, J. et al. (2016), An integrated assessment of the potential of agricultural and forestry residues for energy production in China, GCB Bioenergy, 8(5), 880–893, doi:10.1111/gcbb.12305.

Hartin, C. A., B. Bond-Lamberty, P. Patel, and A. Mundra (2015), Projections of ocean acidification over the next three centuries using a simple global climate carbon-cycle model, Biogeosciences Discussions, 12(23), 19269–19305, doi:10.5194/bgd-12-19269-2015.

Hegre, H., H. Buhaug, K. V. Calvin, J. Nordkvelle, S. T. Waldhoff, and E. Gilmore (2016), Forecasting civil conflict along the shared socioeconomic pathways, Environmental Research Letters, 11(5), 54002, doi:10.1088/1748-9326/11/5/054002.

Huang, S., Q. Huang, G. Leng, and J. Chang (2016), A Hybrid Index for Characterizing Drought Based on a Nonparametric Kernel Estimator, Journal of Applied Meteorology and Climatology, 55(6), 1377–1389, doi:10.1175/JAMC-D-15-0295.1.

Ibrahim, K., A. F. A. Shabudin, K. Chacko Koshy, and G. R. Asrar (2016), A new framework for integrated climate finance and inclusive responses to sustainable development in Malaysia, Geomatics, Natural Hazards and Risk, 7(6), 1754–1768, doi:10.1080/19475705.2016.1155503.

Iyer, G. C., L. E. Clarke, J. A. Edmonds, N. E. Hultman, and H. C. McJeon (2015a), Long-term payoffs of near-term low-carbon deployment policies, Energy Policy, 86, 493–505, doi:10.1016/j.enpol.2015.08.004.

Iyer, G. C. et al. (2015b), The contribution of Paris to limit global warming to 2 °C, Environmental Research Letters, 10(12), 125002, doi:10.1088/1748-9326/10/12/125002.

Iyer, G. C., L. E. Clarke, J. A. Edmonds, and N. E. Hultman (2016), Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?, Energy Policy, 98, 400–411, doi:10.1016/j.enpol.2016.08.017.

Kholod, N., and M. Evans (2016), Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations, Environmental Science & Policy, 56, 1–8, doi:10.1016/j.envsci.2015.10.017.

Kholod, N., M. Evans, E. Gusev, S. Yu, V. Malyshev, S. Tretyakova, and A. Barinov (2016a), A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk, Science of The Total Environment, 547, 305–313, doi:10.1016/j.scitotenv.2015.12.151.

Kholod, N., M. Evans, and T. Kuklinski (2016b), Russia’s black carbon emissions: focus on diesel sources, Atmospheric Chemistry and Physics Discussions, 1–27, doi:10.5194/acp-2016-475.

Kim, S. H., M. Hejazi, L. Liu, K. Calvin, L. Clarke, J. Edmonds, P. Kyle, P. Patel, M. Wise, and E. Davies (2016), Balancing global water availability and use at basin scale in an integrated assessment model, Climatic Change, 136(2), 217–231, doi:10.1007/s10584-016-1604-6.

Kober, T., J. Falzon, B. van der Zwaan, K. Calvin, A. Kanudia, A. Kitous, and M. Labriet (2016), A multi-model study of energy supply investments in Latin America under climate control policy, Energy Economics, 56, 543–551, doi:10.1016/j.eneco.2016.01.005.

Kriegler, E., I. Mouratiadou, G. Luderer, J. Edmonds, and O. Edenhofer (2016a), Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection, Climatic Change, 136(1), 1–6, doi:10.1007/s10584-016-1667-4.

Kriegler, E. et al. (2016b), Will economic growth and fossil fuel scarcity help or hinder climate stabilization?: Overview of the RoSE multi-model study, Climatic Change, 136(1), 7–22, doi:10.1007/s10584-016-1668-3.

Kunkel, K. E., R. Moss, and A. Parris (2016), Innovations in science and scenarios for assessment, Climatic Change, 135(1), 55–68, doi:10.1007/s10584-015-1494-z.

Kyle, P., A. Thomson, M. Wise, and X. Zhang (2015), Assessment of the importance of spatial scale in long-term land use modeling of the Midwestern United States, Environmental Modelling & Software, 72, 261–271, doi:10.1016/j.envsoft.2015.06.006.

Kyle, P., N. Johnson, E. Davies, D. L. Bijl, I. Mouratiadou, M. Bevione, L. Drouet, S. Fujimori, Y. Liu, and M. Hejazi (2016), Setting the System Boundaries of “Energy for Water” for Integrated Modeling, Environmental Science & Technology, 50(17), 8930–8931, doi:10.1021/acs.est.6b01066.

Lawrence, D. M. et al. (2016), The Land Use Model Intercomparison Project (LUMIP): Rationale and experimental design, Geoscientific Model Development Discussions, 1–42, doi:10.5194/gmd-2016-76.

Le Page, Y., T. O. West, R. Link, and P. Patel (2016), Downscaling land use and land cover from the Global Change Assessment Model for coupling with Earth system models, Geoscientific Model Development Discussions, 1–27, doi:10.5194/gmd-2016-75.

Leng, G., X. Zhang, M. Huang, G. R. Asrar, and L. R. Leung (2016), The Role of Climate Covariability on Crop Yields in the Conterminous United States, Scientific Reports, 6, 33160, doi:10.1038/srep33160.

Li, H.-Y., L. Ruby Leung, T. Tesfa, N. Voisin, M. Hejazi, L. Liu, Y. Liu, J. Rice, H. Wu, and X. Yang (2015), Modeling stream temperature in the Anthropocene: An earth system modeling approach: MODELING STREAM TEMPERATURE IN ESM, Journal of Advances in Modeling Earth Systems, 7(4), 1661–1679, doi:10.1002/2015MS000471.

Liu, L., T. Hwang, S. Lee, Y. Ouyang, B. Lee, S. J. Smith, F. Yan, K. Daenzer, and T. C. Bond (2015), Emission Projections for Long-Haul Freight Trucks and Rail in the United States through 2050, Environmental Science & Technology, 49(19), 11569–11576, doi:10.1021/acs.est.5b01187.

Liu, Y., M. Hejazi, P. Kyle, S. H. Kim, E. Davies, D. G. Miralles, A. J. Teuling, Y. He, and D. Niyogi (2016), Global and Regional Evaluation of Energy for Water, Environmental Science & Technology, 50(17), 9736–9745, doi:10.1021/acs.est.6b01065.

Lucas, P. L., J. Nielsen, K. Calvin, D. L. McCollum, G. Marangoni, J. Strefler, B. C. C. van der Zwaan, and D. P. van Vuuren (2015), Future energy system challenges for Africa: Insights from Integrated Assessment Models, Energy Policy, 86, 705–717, doi:10.1016/j.enpol.2015.08.017.

Luderer, G., C. Bertram, K. Calvin, E. De Cian, and E. Kriegler (2016), Implications of weak near-term climate policies on long-term mitigation pathways, Climatic Change, 136(1), 127–140, doi:10.1007/s10584-013-0899-9.

Luo, Y. et al. (2016), Toward more realistic projections of soil carbon dynamics by Earth system models: SOIL CARBON MODELING, Global Biogeochemical Cycles, 30(1), 40–56, doi:10.1002/2015GB005239.

Lynch, C., C. Hartin, B. Bond-Lamberty, and B. Kravitz (2016), Exploring global surface temperature pattern scaling methodologies and assumptions from a CMIP5 model ensemble, Geoscientific Model Development Discussions, 1–24, doi:10.5194/gmd-2016-170.

McFarland, J. et al. (2015), Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison, Climatic Change, 132(4), 739–739, doi:10.1007/s10584-015-1452-9.

Meehl, G. A., and R. Moss (2016), Aspen Global Change Institute: 25 Years of Interdisciplinary Global Change Science, Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-15-00204.1.

Moser, S. C., J. M. Melillo, K. L. Jacobs, R. H. Moss, and J. L. Buizer (2016), Aspirations and common tensions: larger lessons from the third US national climate assessment, Climatic Change, 135(1), 187–201, doi:10.1007/s10584-015-1530-z.

Moss, R. H. (2016), Assessing decision support systems and levels of confidence to narrow the climate information “usability gap,” Climatic Change, 135(1), 143–155, doi:10.1007/s10584-015-1549-1.

Muratori, M., and G. Rizzoni (2016), Residential Demand Response: Dynamic Energy Management and Time-Varying Electricity Pricing, IEEE Transactions on Power Systems, 31(2), 1108–1117, doi:10.1109/TPWRS.2015.2414880.

Muratori, M., K. Calvin, M. Wise, P. Kyle, and J. Edmonds (2016), Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS), Environmental Research Letters, 11(9), 95004, doi:10.1088/1748-9326/11/9/095004.

O'Neill, B. C. et al. (2016), The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geoscientific Model Development Discussions, 1–35, doi:10.5194/gmd-2016-84.

Orsi, F., M. Muratori, M. Rocco, E. Colombo, and G. Rizzoni (2016), A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost, Applied Energy, 169, 197–209, doi:10.1016/j.apenergy.2016.02.039.

Prestele, R. et al. (2016), Hotspots of uncertainty in land use and land cover change projections: a global scale model comparison, Global Change Biology, doi:10.1111/gcb.13337.

Rafique, R., J. Xia, O. Hararuk, G. Leng, G. Asrar, and Y. Luo (2016a), Comparing the Performance of Three Land Models in Global C Cycle Simulations: A Detailed Structural Analysis: Stuructral Analysis of Land Models, Land Degradation & Development, n/a-n/a, doi:10.1002/ldr.2506.

Rafique, R., F. Zhao, R. de Jong, N. Zeng, and G. Asrar (2016b), Global and Regional Variability and Change in Terrestrial Ecosystems Net Primary Production and NDVI: A Model-Data Comparison, Remote Sensing, 8(3), 177, doi:10.3390/rs8030177.

Rao, S. et al. (2016), Future air pollution in the Shared Socio-economic Pathways, Global Environmental Change, doi:10.1016/j.gloenvcha.2016.05.012.

Roshchanka, V., and M. Evans (2016), Scaling up the energy service company business: market status and company feedback in the Russian Federation, Journal of Cleaner Production, 112, 3905–3914, doi:10.1016/j.jclepro.2015.05.078.

van Ruijven, B. J. et al. (2016), Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions, Energy Economics, 56, 499–512, doi:10.1016/j.eneco.2015.02.003.

Schuelke-Leech, B.-A., B. Barry, M. Muratori, and B. J. Yurkovich (2015), Big Data issues and opportunities for electric utilities, Renewable and Sustainable Energy Reviews, 52, 937–947, doi:10.1016/j.rser.2015.07.128.

Scott, M. J. et al. (2015), Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model, Energy, 90, 1682–1694, doi:10.1016/

Scott, M. J., D. S. Daly, M. I. Hejazi, G. P. Kyle, L. Liu, H. C. McJeon, A. Mundra, P. L. Patel, J. S. Rice, and N. Voisin (2016), Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework, Climatic Change, 136(2), 233–246, doi:10.1007/s10584-016-1602-8.

Simmons, A. et al. (2016), Observation and integrated Earth-system science: A roadmap for 2016–2025, Advances in Space Research, 57(10), 2037–2103, doi:10.1016/j.asr.2016.03.008.

Smith, P. et al. (2015), Biophysical and economic limits to negative CO2 emissions, Nature Climate Change, 6(1), 42–50, doi:10.1038/nclimate2870.

Smith, S. J., S. Rao, K. Riahi, D. P. van Vuuren, K. V. Calvin, and P. Kyle (2016), Future aerosol emissions: a multi-model comparison, Climatic Change, 138(1–2), 13–24, doi:10.1007/s10584-016-1733-y.

Stevens, B., S. Fiedler, S. Kinne, K. Peters, S. Rast, J. Müsse, S. J. Smith, and T. Mauritsen (2016), Simple Plumes: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for climate studies, Geoscientific Model Development Discussions, 1–34, doi:10.5194/gmd-2016-189.

Veysey, J., C. Octaviano, K. Calvin, S. H. Martinez, A. Kitous, J. McFarland, and B. van der Zwaan (2016), Pathways to Mexico’s climate change mitigation targets: A multi-model analysis, Energy Economics, 56, 587–599, doi:10.1016/j.eneco.2015.04.011.

Voisin, N., M. Kintner-Meyer, R. Skaggs, T. Nguyen, D. Wu, J. Dirks, Y. Xie, and M. Hejazi (2016), Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?, Energy, 115, 1–12, doi:10.1016/

van Vuuren, D. P., H. van Soest, K. Riahi, L. Clarke, V. Krey, E. Kriegler, J. Rogelj, M. Schaeffer, and M. Tavoni (2016), Carbon budgets and energy transition pathways, Environmental Research Letters, 11(7), 75002, doi:10.1088/1748-9326/11/7/075002.

Wang, L., P. L. Patel, S. Yu, B. Liu, J. McLeod, L. E. Clarke, and W. Chen (2016), Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China, Applied Energy, 163, 244–253, doi:10.1016/j.apenergy.2015.10.189.

Wobus, C., M. Flanner, M. C. Sarofim, M. C. P. Moura, and S. J. Smith (2016), Future Arctic temperature change resulting from a range of aerosol emissions scenarios: AEROSOLS AND ARCTIC TEMPERATURE, Earth’s Future, 4(6), 270–281, doi:10.1002/2016EF000361.

Wolf, J., T. O. West, Y. Le Page, G. P. Kyle, X. Zhang, G. J. Collatz, and M. L. Imhoff (2015), Biogenic carbon fluxes from global agricultural production and consumption: GLOBAL AGRICULTURAL CARBON FLUXES, Global Biogeochemical Cycles, 29(10), 1617–1639, doi:10.1002/2015GB005119.

Yang, Q., and X. Zhang (2016), Improving SWAT for simulating water and carbon fluxes of forest ecosystems, Science of The Total Environment, 569570, 1478–1488, doi:10.1016/j.scitotenv.2016.06.238.

Yang, Q., X. Zhang, X. Xu, G. R. Asrar, R. A. Smith, J.-S. Shih, and S. Duan (2016a), Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States, Science of The Total Environment, 554555, 266–275, doi:10.1016/j.scitotenv.2016.02.164.

Yang, Q., H. Tian, X. Li, W. Ren, B. Zhang, X. Zhang, and J. Wolf (2016b), Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012, Science of The Total Environment, 541, 1592–1602, doi:10.1016/j.scitotenv.2015.10.044.

Zhang, L., Q. Zhuang, X. Li, Q. Zhao, D. Yu, Y. Liu, X. Shi, S. Xing, and G. Wang (2016a), Carbon sequestration in the uplands of Eastern China: An analysis with high-resolution model simulations, Soil and Tillage Research, 158, 165–176, doi:10.1016/j.still.2016.01.001.

Zhang, L., Q. Zhuang, Y. He, Y. Liu, D. Yu, Q. Zhao, X. Shi, S. Xing, and G. Wang (2016b), Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China, Geoderma, 275, 28–39, doi:10.1016/j.geoderma.2016.04.001.

Zhang, Y., J. H. Bowden, Z. Adelman, V. Naik, L. W. Horowitz, S. J. Smith, and J. J. West (2016c), Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050, Atmospheric Chemistry and Physics, 16(15), 9533–9548, doi:10.5194/acp-16-9533-2016.

Zhao, F. et al. (2016), Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis, Biogeosciences Discussions, 1–32, doi:10.5194/bg-2016-121.

Zhu, Y., S. Huang, J. Chang, and G. Leng (2016), Spatial–temporal changes in potential evaporation patterns based on the Cloud model and their possible causes, Stochastic Environmental Research and Risk Assessment, doi:10.1007/s00477-016-1304-9.

van der Zwaan, B. C. C., K. V. Calvin, and L. E. Clarke (2016a), Climate Mitigation in Latin America: Implications for Energy and Land Use, Energy Economics, 56, 495–498, doi:10.1016/j.eneco.2016.05.005.

van der Zwaan, B., T. Kober, S. Calderon, L. Clarke, K. Daenzer, A. Kitous, M. Labriet, A. F. P. Lucena, C. Octaviano, and N. Di Sbroiavacca (2016b), Energy technology roll-out for climate change mitigation: A multi-model study for Latin America, Energy Economics, 56, 526–542, doi:10.1016/j.eneco.2015.11.019.





Alonso, W. J., B. J. J. McCormick, M. A. Miller, C. Schuck-Paim, and G. R. Asrar (2015), Beyond crystal balls: crosscutting solutions in global health to prepare for an unpredictable future, BMC Public Health, 15(1), doi:10.1186/s12889-015-2285-1.

Arent, D. et al. (2015), A review of water and greenhouse gas impacts of unconventional natural gas development in the United States, MRS Energy & Sustainability, 2, doi:10.1557/mre.2015.5.

Barron, R., and H. McJeon (2015), The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios, Energy Policy, 80, 264–274, doi:10.1016/j.enpol.2015.01.038.

Bauer, N. et al. (2015), CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies, Technological Forecasting and Social Change, 90, 243–256, doi:10.1016/j.techfore.2013.09.009.

Beach, R. H. et al. (2015), Climate change impacts on US agriculture and forestry: benefits of global climate stabilization, Environmental Research Letters, 10(9), 95004, doi:10.1088/1748-9326/10/9/095004.

Bertram, C., N. Johnson, G. Luderer, K. Riahi, M. Isaac, and J. Eom (2015), Carbon lock-in through capital stock inertia associated with weak near-term climate policies, Technological Forecasting and Social Change, 90, 62–72, doi:10.1016/j.techfore.2013.10.001.

Bond-Lamberty, B., K. Calvin, A. D. Jones, J. Mao, P. Patel, X. Y. Shi, A. Thomson, P. Thornton, and Y. Zhou (2014), On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model, Geoscientific Model Development, 7(6), 2545–2555, doi:10.5194/gmd-7-2545-2014.

Bond-Lamberty, B., J. P. Fisk, J. A. Holm, V. Bailey, G. Bohrer, and C. M. Gough (2015), Moderate forest disturbance as a stringent test for gap and big-leaf models, Biogeosciences, 12(2), 513–526, doi:10.5194/bg-12-513-2015.

Bosetti, V., G. Marangoni, E. Borgonovo, L. Diaz Anadon, R. Barron, H. C. McJeon, S. Politis, and P. Friley (2015), Sensitivity to energy technology costs: A multi-model comparison analysis, Energy Policy, 80, 244–263, doi:10.1016/j.enpol.2014.12.012.

Calvin, K., B. Bond-Lamberty, J. Edmonds, M. Hejazi, S. Waldhoff, M. Wise, and Y. Zhou (2015), The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency, Climatic Change, 131(1), 35–50, doi:10.1007/s10584-013-1026-7.

Campbell, J. E., M. E. Whelan, U. Seibt, S. J. Smith, J. A. Berry, and T. W. Hilton (2015), Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints: Atmospheric OCS sources, Geophysical Research Letters, 42(8), 3004–3010, doi:10.1002/2015GL063445.

Chaturvedi, V., and S. H. Kim (2015), Long term energy and emission implications of a global shift to electricity-based public rail transportation system, Energy Policy, 81, 176–185, doi:10.1016/j.enpol.2014.11.013.

Chaturvedi, V., M. Hejazi, J. Edmonds, L. Clarke, P. Kyle, E. Davies, and M. Wise (2015), Climate mitigation policy implications for global irrigation water demand, Mitigation and Adaptation Strategies for Global Change, 20(3), 389–407, doi:10.1007/s11027-013-9497-4.

Chen, J. M., J. W. Fung, G. Mo, F. Deng, and T. O. West (2015), Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption, Biogeosciences, 12(2), 323–343, doi:10.5194/bg-12-323-2015.

Collins, W. D. et al. (2015), The integrated Earth system model version 1: formulation and functionality, Geoscientific Model Development, 8(7), 2203–2219, doi:10.5194/gmd-8-2203-2015.

Davidson, C. L., D. J. Watson, J. J. Dooley, and R. T. Dahowski (2014a), Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration, Energy Procedia, 63, 4745–4749, doi:10.1016/j.egypro.2014.11.504.

Davidson, C. L., R. T. Dahowski, J. J. Dooley, and B. P. McGrail (2014b), Modelling the Deployment of CO2 Storage in U.S. Gas-bearing Shales, Energy Procedia, 63, 7272–7279, doi:10.1016/j.egypro.2014.11.763.

Di Vittorio, A. V. et al. (2014), From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations, Biogeosciences, 11(22), 6435–6450, doi:10.5194/bg-11-6435-2014.

Engle, N. L., A. de Bremond, E. L. Malone, and R. H. Moss (2014), Towards a resilience indicator framework for making climate-change adaptation decisions, Mitigation and Adaptation Strategies for Global Change, 19(8), 1295–1312, doi:10.1007/s11027-013-9475-x.

Eom, J., J. Edmonds, V. Krey, N. Johnson, T. Longden, G. Luderer, K. Riahi, and D. P. Van Vuuren (2015), The impact of near-term climate policy choices on technology and emission transition pathways, Technological Forecasting and Social Change, 90, 73–88, doi:10.1016/j.techfore.2013.09.017.

Evans, M., N. Kholod, V. Malyshev, S. Tretyakova, E. Gusev, S. Yu, and A. Barinov (2015), Black carbon emissions from Russian diesel sources: case study of Murmansk, Atmospheric Chemistry and Physics, 15(14), 8349–8359, doi:10.5194/acp-15-8349-2015.

Falster, D. S. et al. (2015), BAAD: a Biomass And Allometry Database for woody plants: Ecological Archives E096-128, Ecology, 96(5), 1445–1445, doi:10.1890/14-1889.1.

Gernaat, D. E. H. J., K. Calvin, P. L. Lucas, G. Luderer, S. A. C. Otto, S. Rao, J. Strefler, and D. P. van Vuuren (2015), Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios, Global Environmental Change, 33, 142–153, doi:10.1016/j.gloenvcha.2015.04.010.

Hartin, C. A., P. Patel, A. Schwarber, R. P. Link, and B. P. Bond-Lamberty (2015), A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0, Geoscientific Model Development, 8(4), 939–955, doi:10.5194/gmd-8-939-2015.

Hejazi, M. I. et al. (2015), 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating, Proceedings of the National Academy of Sciences, 112(34), 10635–10640, doi:10.1073/pnas.1421675112.

Iyer, G., N. Hultman, J. Eom, H. McJeon, P. Patel, and L. Clarke (2015a), Diffusion of low-carbon technologies and the feasibility of long-term climate targets, Technological Forecasting and Social Change, 90, 103–118, doi:10.1016/j.techfore.2013.08.025.

Iyer, G. C., L. E. Clarke, J. A. Edmonds, B. P. Flannery, N. E. Hultman, H. C. McJeon, and D. G. Victor (2015b), Improved representation of investment decisions in assessments of CO2 mitigation, Nature Climate Change, 5(5), 436–440, doi:10.1038/nclimate2553.

Jones, A. D., K. V. Calvin, W. D. Collins, and J. Edmonds (2015), Accounting for radiative forcing from albedo change in future global land-use scenarios, Climatic Change, 131(4), 691–703, doi:10.1007/s10584-015-1411-5.

King, A. W. et al. (2015), North America’s net terrestrial CO<sub>2</sub> exchange with the atmosphere 1990–2009, Biogeosciences, 12(2), 399–414, doi:10.5194/bg-12-399-2015.

Kraucunas, I. et al. (2015), Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA), Climatic Change, 129(3–4), 573–588, doi:10.1007/s10584-014-1064-9.

Kriegler, E. et al. (2015), Diagnostic indicators for integrated assessment models of climate policy, Technological Forecasting and Social Change, 90, 45–61, doi:10.1016/j.techfore.2013.09.020.

Le Page, Y., D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt (2015), HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers, Biogeosciences, 12(3), 887–903, doi:10.5194/bg-12-887-2015.

Leng, G., Q. Tang, M. Huang, and L. R. Leung (2015a), A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain, Regional Environmental Change, 15(2), 251–263, doi:10.1007/s10113-014-0640-x.

Leng, G., M. Huang, Q. Tang, and L. R. Leung (2015b), A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate: IRRIGATION EFFECTS ON WATER RESOURCES, Journal of Advances in Modeling Earth Systems, 7(3), 1285–1304, doi:10.1002/2015MS000437.

Leng, G., Q. Tang, M. Huang, Y. Hong, and L. L. Ruby (2015c), Projected changes in mean and interannual variability of surface water over continental China, Science China Earth Sciences, 58(5), 739–754, doi:10.1007/s11430-014-4987-0.

Liu, L., M. Hejazi, P. Patel, P. Kyle, E. Davies, Y. Zhou, L. Clarke, and J. Edmonds (2015a), Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus, Technological Forecasting and Social Change, 94, 318–334, doi:10.1016/j.techfore.2014.11.004.

Liu, Y. et al. (2015b), Agriculture intensifies soil moisture decline in Northern China, Scientific Reports, 5, 11261, doi:10.1038/srep11261.

Malone, E. L., and S. Kinnear (2015), How and why: complementary analyses of social network structures and cultural values: improving flood response networks in Queensland, Australia, Quality & Quantity, 49(1), 203–220, doi:10.1007/s11135-013-9982-6.

McFarland, J. et al. (2015), Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison, Climatic Change, 131(1), 111–125, doi:10.1007/s10584-015-1380-8.

McJeon, H. et al. (2014), Limited impact on decadal-scale climate change from increased use of natural gas, Nature, 514(7523), 482–485, doi:10.1038/nature13837.

Moura, M. C. P., S. J. Smith, and D. B. Belzer (2015), 120 Years of U.S. Residential Housing Stock and Floor Space, edited by W.-X. Zhou, PLOS ONE, 10(8), e0134135, doi:10.1371/journal.pone.0134135.

Ogle, S. M. et al. (2015), An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data, Environmental Research Letters, 10(3), 34012, doi:10.1088/1748-9326/10/3/034012.

Pizer, W. et al. (2014), Using and improving the social cost of carbon, Science, 346(6214), 1189–1190, doi:10.1126/science.1259774.

Rafique, R., S. Kumar, Y. Luo, G. Kiely, and G. Asrar (2015a), An algorithmic calibration approach to identify globally optimal parameters for constraining the DayCent model, Ecological Modelling, 297, 196–200, doi:10.1016/j.ecolmodel.2014.11.022.

Rafique, R., J. Xia, O. Hararuk, G. Asrar, Y. Wang, and Y. Luo (2015b), Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis, Earth System Dynamics Discussions, 6(2), 1579–1604, doi:10.5194/esdd-6-1579-2015.

Riahi, K. et al. (2015), Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals, Technological Forecasting and Social Change, 90, 8–23, doi:10.1016/j.techfore.2013.09.016.

Robertson, G. P., P. R. Grace, R. C. Izaurralde, W. P. Parton, and X. Zhang (2014), CO2 emissions from crop residue-derived biofuels, Nature Climate Change, 4(11), 933–934, doi:10.1038/nclimate2402.

Sahajpal, R., X. Zhang, R. C. Izaurralde, I. Gelfand, and G. C. Hurtt (2014), Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt, Computers and Electronics in Agriculture, 108, 173–182, doi:10.1016/j.compag.2014.08.005.

Sarofim, M. C., S. T. Waldhoff, and S. C. Anenberg (2015), Valuing the Ozone-Related Health Benefits of Methane Emission Controls, Environmental and Resource Economics, doi:10.1007/s10640-015-9937-6.

Schäfer, A., P. Kyle, and R. Pietzcker (2016), Exploring the use of dynamic linear panel data models for evaluating energy/economy/environment models — an application for the transportation sector, Climatic Change, 136(1), 141–154, doi:10.1007/s10584-014-1293-y.

Sinistore, J. C., D. J. Reinemann, R. C. Izaurralde, K. R. Cronin, P. J. Meier, T. M. Runge, and X. Zhang (2015), Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts, BioEnergy Research, 8(3), 897–909, doi:10.1007/s12155-015-9611-4.

Smith, S. J. et al. (2015a), Long history of IAM comparisons, Nature Climate Change, 5(5), 391–391, doi:10.1038/nclimate2576.

Smith, S. J., J. Edmonds, C. A. Hartin, A. Mundra, and K. Calvin (2015b), Near-term acceleration in the rate of temperature change, Nature Climate Change, 5(4), 333–336, doi:10.1038/nclimate2552.

Strzepek, K. et al. (2015), Benefits of greenhouse gas mitigation on the supply, management, and use of water resources in the United States, Climatic Change, 131(1), 127–141, doi:10.1007/s10584-014-1279-9.

Tavoni, M. et al. (2014), Post-2020 climate agreements in the major economies assessed in the light of global models, Nature Climate Change, 5(2), 119–126, doi:10.1038/nclimate2475.

Tian, H. et al. (2015), Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions: MODELING GLOBAL SOIL CARBON DYNAMICS, Global Biogeochemical Cycles, 29(6), 775–792, doi:10.1002/2014GB005021.

Waldhoff, S., D. Anthoff, S. Rose, and R. S. J. Tol (2014), The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND, Economics: The Open-Access, Open-Assessment E-Journal, 8(2014–31), 1, doi:10.5018/economics-ejournal.ja.2014-31.

Waldhoff, S. T., J. Martinich, M. Sarofim, B. DeAngelo, J. McFarland, L. Jantarasami, K. Shouse, A. Crimmins, S. Ohrel, and J. Li (2015), Overview of the special issue: a multi-model framework to achieve consistent evaluation of climate change impacts in the United States, Climatic Change, 131(1), 1–20, doi:10.1007/s10584-014-1206-0.

Yang, X., C. Liu, Y. Fang, R. Hinkle, H.-Y. Li, V. Bailey, and B. Bond-Lamberty (2015), Simulations of ecosystem hydrological processes using a unified multi-scale model, Ecological Modelling, 296, 93–101, doi:10.1016/j.ecolmodel.2014.10.032.

Yin, X., W. Chen, J. Eom, L. E. Clarke, S. H. Kim, P. L. Patel, S. Yu, and G. P. Kyle (2015), China’s transportation energy consumption and CO2 emissions from a global perspective, Energy Policy, 82, 233–248, doi:10.1016/j.enpol.2015.03.021.

Zeng, N., F. Zhao, G. J. Collatz, E. Kalnay, R. J. Salawitch, T. O. West, and L. Guanter (2014), Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude, Nature, 515(7527), 394–397, doi:10.1038/nature13893.

Zhang, X., R. C. Izaurralde, D. H. Manowitz, R. Sahajpal, T. O. West, A. M. Thomson, M. Xu, K. Zhao, S. D. LeDuc, and J. R. Williams (2015), Regional scale cropland carbon budgets: Evaluating a geospatial agricultural modeling system using inventory data, Environmental Modelling & Software, 63, 199–216, doi:10.1016/j.envsoft.2014.10.005.

Zhao, N., Y. Zhou, and E. L. Samson (2015), Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images, IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2039–2049, doi:10.1109/TGRS.2014.2352598.

Zhou, Y., M. Hejazi, S. Smith, J. Edmonds, H. Li, L. Clarke, K. Calvin, and A. Thomson (2015a), A comprehensive view of global potential for hydro-generated electricity, Energy Environ. Sci., 8(9), 2622–2633, doi:10.1039/C5EE00888C.

Zhou, Y., S. J. Smith, K. Zhao, M. Imhoff, A. Thomson, B. Bond-Lamberty, G. R. Asrar, X. Zhang, C. He, and C. D. Elvidge (2015b), A global map of urban extent from nightlights, Environmental Research Letters, 10(5), 54011, doi:10.1088/1748-9326/10/5/054011.



Notable Publications Previous to 2015


Searchable Database Here