Distribution of equilibrium climate sensitivity and transient climate response found in the latest climate model ensemble

Juichi Tsutsui
Central Research Institute of Electric Power Industry
Studies on mitigation pathways

Complex multi-model ensemble and other evidence
CMIP provides fundamental resources

Climate model emulator
providing probabilistic climate projections

Mitigation pathways
assessed for consistency with a given temperature goal

CMIP5, C4MIP
↓
CMIP6

MAGICC6
↓
MAGICC6, FaIR-1.3 for non-CO₂ forcing

RCMIP (?)

AR5DB
↓
SR15DB
↓
AR6DB

updates on forcing and sensitivity
adapted through openscm
Research objectives

– diagnose forcing-response properties of CMIP6 models in idealized CO₂ scenarios
 • abrupt quadrupling of concentration (step forcing)
 • 1%/y increase of concentration (ramp forcing)

– compare CMIP6 and CMIP5 focusing on climate sensitivity
 • equilibrium climate sensitivity (ECS)
 • transient climate response (TCR)

– consider revising the methodology of probabilistic climate projections considering assessed likely range of key metrics
Method — Impulse Response Model (IRM)

\[T_k(t) = \int_0^t \frac{F(t')}{\lambda} \sum_i \frac{A_{ki}}{\tau_i} \exp \left(-\frac{t - t'}{\tau_i} \right) \, dt' \]

\[\sum_i A_{ki} = 1 \quad (k = S, 1, \ldots; i = 0, 1, \ldots) \]

\(\lambda \): climate feedback parameter
\(A_{ki}, \tau_i \): three normalized amplitudes and time constants
= six independent parameters

converted from a 3-box model for Earth’s energy balance including explicit ocean heat uptake

\[T_s, T_1, T_2: \text{Temp. anomaly} \]
\(\lambda, \lambda_1, \lambda_2: \text{Exchange coeff.} \]
\(C_s, C_1, C_2: \text{Heat capacity} \)
Characteristics of IRM method

- simplicity and accuracy
 - easy to be handled for calibration and probabilistic analyses
 - two exponentials are usually sufficient, three are better for volcanic forcing and CDR scenarios

- transparency and consistency
 - calibrated parameters provide a general quantity of transient temperature response, from which TCR is derived as a realized warming fraction
 - tool for both emulating and diagnosing complex models, ensuring methodological consistency
Calibration and diagnosing sensitivity

Use **timeseries fitting for N and T_s** from 4x and 1%/y experiments, instead of the conventional N-T_s regression for 4x experiment.

Effective radiative forcing of CO₂ considers **logarithmic proportionality** with a factor of \(\alpha \) and **amplification** from first doubling to second doubling with a factor of \(\beta \).

Up to doubling:

\[
F_x = \alpha \ln(x)
\]

Greater levels:

\[
\tilde{F}_x = \beta F_x + (\beta - 1)(F_x - 2F_2) \left(\frac{2F_x}{F_2} - 1 \right)
\]
Emulation for 25 CMIP5 models

Panels share a common vertical range
Emulation for 22 CMIP6 models as of mid October

The vertical range is the same as in the previous page.
Multi-model distribution of TCR and ECS

CMIP6 inter-model variation is still large

CMIP6 models spread toward higher sensitivities than CMIP5 models

TCR-to-ECS ratio (realized warming fraction) is smaller in high-sensitivity models

WGCM, representing the CMIP6 community, is leading a paper to better understand ECS from the CMIP6 models
Ensemble-mean changes

<table>
<thead>
<tr>
<th></th>
<th>CMIP5</th>
<th>CMIP6</th>
<th>%-change</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS</td>
<td>3.10 K</td>
<td>3.65 K</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>(3.29 K)</td>
<td>(3.99 K)</td>
<td>(21%)</td>
</tr>
<tr>
<td>TCR</td>
<td>1.85 K</td>
<td>2.09 K</td>
<td>13%</td>
</tr>
</tbody>
</table>

Numbers in parentheses are conventional ECS estimates, i.e., halved equilibrium response to 4x CO₂

- The numbers are subject to **data availability**, including potential biases due to "**ensemble of opportunity**", and should be examined with advanced weighting and constrain approaches.

- The **relatively smaller change in TCR** is robust and resulted from the tendency of the realized warming fraction (RWF), consistent with the relationship between feedback strength and response timescale.
Decomposition of sensitivity variation

Fractional variation $\equiv \frac{\delta \alpha}{\alpha} + \frac{\delta \beta}{\beta} + \frac{\delta (1/\lambda)}{(1/\lambda)} + \frac{\delta \text{RWF}_{2x}}{\text{RWF}_{2x}}$

α: forcing scale, β: forcing amplification, $1/\lambda$: feedback strength, RWF: ocean heat uptake

λ is further decomposed into individual feedback terms (out of scope in this study)

Dependency on decomposes terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS</td>
<td>$\alpha, 1/\lambda$</td>
</tr>
<tr>
<td>ECS*</td>
<td>$\alpha, \beta, 1/\lambda$</td>
</tr>
<tr>
<td>TCR</td>
<td>$\alpha, 1/\lambda, \text{RWF}$</td>
</tr>
</tbody>
</table>

ECS*: conventional estimation
Multi-model distributions of TCR-relevant parameters

1. Feedback strength \((1/\lambda)\) is the most dominant term
2. Its increase is somewhat compensated by RWF decrease
3. The negative correlation comes from the longest timescale \((A_2)\) variability

consistent with the theoretical relationship between the feedback strength and response timescales
How we consider CMIP6 in mitigation studies

– Climate sensitivity is not assessed from modelling study alone
 • AR6 authors will consider many lines of evidence

– New models generally incorporates new physical insights using new schemes for prognostic clouds and aerosol processes
 • which may lead to an upward revision of assessed climate sensitivity
Calibration to be consistent with assessed key metrics

Example: calibration to TCRE at 50% and 33–67% based on AR5 likely range

DEFAULT and PROB-33rd/67th are calibrated so that instantaneous TCRE at about 1200 GtC in 1pctCO2 is 1.65 K and 1.28/2.02 K based on percent points of a normal distribution for the AR5 likely range of 0.8 to 2.5 K

3 calibs selected based on PC analysis for 8 params
Conclusions

– Complex climate models can be emulated and characterized with sufficient accuracy and transparency by a reduced form of forcing-response representations
 • The present method has six and two parameters for thermal response and CO₂ forcing
 • balanced with simplicity and accuracy
– Although CMIP6 models show higher sensitivity than the CMIP5 models, realized warming (TCR) is not much different compared with estimated equilibrium response (ECS)
– Emulators can be adjusted to be consistent with assessed key metrics and the multi-model variation of forcing-response properties