Scenario modeling for emission pathway and the related synergies in China’s steel and cement sectors

Shaohui Zhang

1 School of Economics & Management, Beihang University, Beijing 100191, China.

Background

A better understanding of sustainable climate solutions is crucial because the COP24 sets out each country should provide their national action plans, including GHGs mitigation and related adaptation measures. Most of energy models tend to focus on assess global and regional solutions and thereby miss linkages across countries and sub demand sectors, which leads to GHGs mitigation are often not very realistic and cannot be used to design specific policies.

Motivation

The objective of this study is to assess the cost-effective synergies in terms of energy & resource saving, emission reduction of CO2 and environmental pollution in China’s steel and cement sectors.

Methodology

The MESSAGEix – SCM (Steel & cement Model) through integrate the cement and steel sectors into the IIASA’s MESSAGEix framework to identify cost benefit potential for energy & resource saving and emission reductions. We select China as a case study, because China responsible for over 50% of the global cement and steel production and together consumes one quarter of China’s total energy.

MESSAGEix – SCM is a technology-based model, which provides a complete description of the process and the related retrofitting measures for steel and cement sectors. Of overall 15 process technologies and 90 energy efficiency measures are include in MESSAGEix – SCM.

Modelling framework for MESSAGEix – SCM

Conclusions

➢ The peaks of energy & resource consumption and emissions appeared in 2015, then will be decline up to 2050.
➢ There are large potentials to decrease energy consumption and emissions without considering mitigation technologies.
➢ Cost-effective energy efficiency technologies would lead to 7% and 5% of energy saved in steel and cement industries, respectively.
➢ Process of EAF and NSP technology will be cost-effective in the future to improve energy and resource efficiency, and decline emissions.

Contact information: s_zhang@buaa.edu.cn(Shaohui Zhang)