EMBODIED EMISSIONS IN FRENCH TRADE UNDER NATIONAL CLIMATE CONSTRAINTS FOR A LOW CARBON SOCIETY

Gaëlle LE TREUT - CIRED
Antoine Teixeira - CIRED
The key role of emissions in trade under constrained national efforts for mitigation

- Carbon ‘leakage’: a remaining issue
 - A global agreement but national mitigation plans
 - Contrasted level of ambition
The key role of emissions in trade under constrained national efforts for mitigation

- Carbon ‘leakage’: a remaining issue
 - A global agreement but national mitigation plans
 - Contrasted level of ambition

- Different scopes of inventories to be highlighted

TERRITORIAL-BASED EMISSIONS
Direct measures and technology-oriented inventories
General greenhouse gas emissions and removals taking place within national territory and offshore areas over which the country has jurisdiction (IPCC, 2006)

CONSUMPTION-BASED EMISSIONS
Indirect “measures” and emissions embodied to international trade
Methods: embodied emissions in bilateral trade, multi-regional input-output

PRODUCTION-BASED EMISSIONS
Consistent with System of National Accounts description, and economic sectors (IOT)
Methods: each energy purchases associated to a quantity of emissions
Objectives

- Analysing wide implications of French decarbonization scenarios in the mid-term to long-term

 Consistency between

 - Macroeconomics
 - Competitiveness
 - CO2 emissions regarding different inventories

- Implementing boundaries conditions

 To what extent France's mitigation objectives may impact its external trade both in economic or emissions terms?
IMACLIM-FR: a hybrid CGE model in open economy

Simultaneous equilibria in monetary and physical units (Mtoe, tons of steel, tons of cement)

- 10 income classes
 - Prices, Incomes
 - Final demand

Production system

- Payroll & other taxes
- Transfers

Public administrations

Limited adaptation capacity (technical constraints)

Equilibrium unemployment (constraint on the adjustment of wage)

Rest of the world
- Flows of products & funds

Limited adaptation capacity (technical constraints & basic needs for energy)

International trade competitiveness function of the production costs

Public finance modalities (A tax and benefit system with multiple objectives)

Exports
- Imports

Hosted on Github

Articulation with an Input-Output Analysis

PRODUCTION-BASED EMISSIONS

- Input Output table in Emissions (MtCO2)
 - **Emissions intensities from IPCC**
 - \(\text{Emiss}_{ij} = \beta \cdot Q_{ij} \)

CONSUMPTION-BASED EMISSIONS

A “unilateral multi-regional” IO approach

- French partners specificities by sectors

 A “quasi-closed” economy

 - Exports are not re-imported
 - Imports are used for French consumption and/or re-exported

From statistical information available

Step 1

- Matrix of unit prices (value/Mtoe)

Purchases

- \(\text{V}_{ij} = P_{ij} \cdot Q_{ij} \)

Input Output table in volume (Mtoe)

Import purchases

Domestic purchases

Input Output table in volume (Mtoe)

Matrix of unit prices (value/Mtoe)
Production-based vs. Consumption-based accounting system at base year (2010)

Emissions due to
exports
72
Emissions due to
domestic final
collection
187
Households direct
emissions
127

Production-based accounting

MitCO2

386

IAMC Conference, Sevilla – November 2018
Production-based vs. Consumption-based accounting system at base year (2010)

IAMC Conference, Sevilla – November 2018
Sectoral decomposition of emissions embodied in international trade at base year (2010)
Sectoral decomposition of emissions embodied in international trade at base year (2010)
Sectoral decomposition of emissions embodied in international trade at base year (2010)
Sectoral decomposition of emissions embodied in international trade at base year (2010)
Sectoral decomposition of emissions embodied in international trade at base year (2010)

IAMC Conference, Sevilla – November 2018
Two mitigation scenarios with a two-step resolution 2030 and 2050

A common national context

<table>
<thead>
<tr>
<th></th>
<th>GDP Growth (annual growth rate: +1.48% 2030/2010, +1.70% 2050/2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment rates</td>
<td></td>
</tr>
<tr>
<td>Population / Workforce/ Retirement</td>
<td></td>
</tr>
<tr>
<td>Constant domestic savings rate</td>
<td></td>
</tr>
</tbody>
</table>

NDC Scenario

- Gain in domestic energy efficiency
- Policy design:
 - Constant carbon tax recycled into labour tax (100€/tCO2)

DM Scenario

- Toward carbon neutrality:
 - Higher gain in energy efficiency
 - Higher carbon tax (225€/tCO2 in 2030 and 600€/tCO2 in 2050)
 - Increase of existing tax for energy sectors in 2050
- Lower global GDP growth than NDC scenario
- Evolution of all import prices and lower energy intensities for the RoW
Two mitigation scenarios with a two-step resolution 2030 and 2050

<table>
<thead>
<tr>
<th>A common national context</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP Growth ((\text{annual growth rate}: +1.48% \ 2030/2010, +1.70% \ 2050/2030))</td>
<td></td>
</tr>
<tr>
<td>Unemployment rates</td>
<td></td>
</tr>
<tr>
<td>Population / Workforce/ Retirement</td>
<td></td>
</tr>
<tr>
<td>Constant domestic savings rate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NDC Scenario</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain in domestic energy efficiency</td>
<td></td>
</tr>
<tr>
<td>Policy design</td>
<td></td>
</tr>
<tr>
<td>• Constant carbon tax recycled into labour tax (100€/tCO2)</td>
<td></td>
</tr>
<tr>
<td>International context and boundaries conditions</td>
<td></td>
</tr>
<tr>
<td>• Global GDP growth</td>
<td></td>
</tr>
<tr>
<td>• Evolution of primary energy import prices & energy intensities</td>
<td></td>
</tr>
</tbody>
</table>
Two mitigation scenarios with a two-step resolution 2030 and 2050

<table>
<thead>
<tr>
<th>A common national context</th>
<th>GDP Growth (annual growth rate: +1.48% 2030/2010, +1.70% 2050/2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment rates</td>
<td></td>
</tr>
<tr>
<td>Population / Workforce/ Retirement</td>
<td></td>
</tr>
<tr>
<td>Constant domestic savings rate</td>
<td></td>
</tr>
</tbody>
</table>

NDC Scenario

Gain in domestic energy efficiency

Policy design

- Constant carbon tax recycled into labour tax (100€/tCO2)

International context and boundaries conditions

- Global GDP growth
- Evolution of primary energy import prices & energy intensities

DM Scenario

Toward carbon neutrality: Higher gain in energy efficiency

Higher carbon tax (225€/tCO2 in 2030 and 600€/tCO2 in 2050)

+ increase of existing tax for energy sectors in 2050

Lower global GDP Growth than NDC scenario

Evolution of all import prices and lower energy intensities for the RoW
Evolution of Production-based vs. Consumption-based emissions inventories
Evolution of Production-based vs. Consumption-based emissions inventories

IAMC Conference, Sevilla – November 2018
Evolution of Production-based vs. Consumption-based emissions inventories

IAMC Conference, Sevilla – November 2018
Evolution of Production-based vs. Consumption-based emissions inventories

IAMC Conference, Sevilla – November 2018

NDC scenario: +64%
DM scenario: +99%

NDC scenario: +81%
Sectoral insights of CO₂ net imports

<table>
<thead>
<tr>
<th>Sector</th>
<th>2010, MtCO₂ Base Year</th>
<th>2030, MtCO₂</th>
<th>2050, MtCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NDC scenario</td>
<td>DM scenario</td>
</tr>
<tr>
<td>Heavy industries</td>
<td>-3</td>
<td>+10</td>
<td></td>
</tr>
<tr>
<td>Composite</td>
<td>+91</td>
<td>+118</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>+13</td>
<td>+16</td>
<td></td>
</tr>
</tbody>
</table>

- Increases of domestic prices relative to world prices lead to competitiveness losses
- Increases of investment needs for construction
Sectoral insights of CO₂ net imports

<table>
<thead>
<tr>
<th>Sector</th>
<th>2010, MtCO₂ Base Year</th>
<th>2030, MtCO₂</th>
<th>2050, MtCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NDC scenario</td>
<td>DM scenario</td>
</tr>
<tr>
<td>Heavy industries</td>
<td>-3</td>
<td>+10</td>
<td>+15</td>
</tr>
<tr>
<td>Composite</td>
<td>+91</td>
<td>+118</td>
<td>+128</td>
</tr>
<tr>
<td>Construction</td>
<td>+13</td>
<td>+16</td>
<td>+17</td>
</tr>
</tbody>
</table>

- Higher competitiveness losses in DM scenario both in 2030 & 2050
- A fast improving of RoW Emissions intensities in 2050 leads the better situation in CO2 emissions embodied in French imports
Preliminary conclusions and perspectives

- A methodology that allows at the country-scale and under national climate constraint
 - keeping an economy-energy consistent analysis with all the feedbacks of a climate policy
 - while tracking the carbon embodied in imports through specific boundaries conditions

- Further analysis
 - Sensitivity analysis:
 - International system of prices
 - Feedbacks on external trade -> on carbon footprint
 - Contrasted scenario: ‘reindustrialisation’ of France and impacts on external trade

- Policy design
 - Implementing a cap on carbon embodied in imports (implicit constraint on external trade balance)
 - Border tax adjustment
EMBODIED EMISSIONS IN FRENCH TRADE
UNDER NATIONAL CLIMATE CONSTRAINTS
FOR A LOW CARBON SOCIETY

Thank you for your attention

Work in progress – Any comments
Contact : Gaëlle LE TREUT
letreut[at]centre-cired.fr
Web: www.centre-cired.fr