Electrifying Transport and the Cost of Mitigation

Jae Edmonds
Son H. Kim, Stephanie Waldhoff, Allen Fawcett, James McFarland

November 2018
Integrated Assessment Modeling Consortium Annual Meeting
Seville, Spain
Our question

• How would the electrification of transportation affect the global energy system and greenhouse gas emissions mitigation?

Source: https://energy.gov/eere/vehicles/plug-electric-vehicles-and-batteries/
Both examples use the JGCRI Global Change Assessment Model (GCAM)

Scenario Assumptions
- Socioeconomic assumptions (population, GDP)
- Energy, land use, and water technologies
- Policies
- Resources

Scenario Outputs
- Prices and production quantities:
 - Energy sectors
 - Transportation
 - Primary energy resources
 - Agricultural products
- Land use
 - Crops (by type)
 - Pasture
 - Unmanaged
- Water demand
 - Raw demand by sector
 - Response to scarcity
- Atmosphere-Climate
- Economic indicators
 - Economic losses
 - Income transfer
Existing GCAM elements

Materials Sector (KLEM)

New GCAM-Macro elements

GDP

NOTATION
Lm = labor used for materials production
La = labor used in agricultural production
I = investment
K = capital stock
GDP = gross domestic product

Existing GCAM elements

Land

Energy

Water
Experimental design

• All scenarios assume SSP2 (Middle of the Road) underlying socioeconomic drivers

• Policy assumptions
 • Current policies only
 • 2-degrees

• Transport technology pathways
 • SSP2 transport technology
 • Accelerated electric vehicles
 • Phase out of non-electric vehicles

Source: http://viola.bz/your-life-is-your-road/life-is-a-road-5/
Transport technology pathways

<table>
<thead>
<tr>
<th>Technology Scenario</th>
<th>Technology Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP2 transport technology</td>
<td>Passenger Light-Duty
BEV Capital Cost: 10 - 50 % greater than ICE
BEV Fuel Efficiency: ~3 x better than ICE</td>
</tr>
<tr>
<td>Accelerated electric vehicles</td>
<td>Passenger Bus and Freight Truck
BEV Capital Cost: Equal to ICE by 2035
BEV Fuel Efficiency: ~3x better than ICE</td>
</tr>
<tr>
<td>Phase out of non-electric vehicles</td>
<td>Phase Out ICE by 2050 for
Passenger Lt-Duty
Passenger Bus
Freight Truck</td>
</tr>
</tbody>
</table>
Final Energy Consumption
Transportation Services

Passenger (10^{12} Pass–Km)

- Base
- MixedBEV
- BEVonly
- 2.6_Base
- 2.6_MixedBEV
- 2.6_BEVonly

Freight – Land (10^{12} Ton–Km)

- Base
- MixedBEV
- BEVonly
- 2.6_Base
- 2.6_MixedBEV
- 2.6_BEVonly
Global Transport, Power and Total CO$_2$
Global Transport, Power and Total CO$_2$
Global Transport, Power and Total CO$_2$

Transportation Sector CO$_2$ Emissions

- **Base**
- **MixedBEV**
- **BEVonly**
- **2.6_Base**
- **2.6_MixedBEV**
- **2.6_BEVonly**

Electricity Production

- **Base**
- **MixedBEV**
- **BEVonly**
- **2.6_Base**
- **2.6_MixedBEV**
- **2.6_BEVonly**
Global Transport, Power and Total CO$_2$
GDP Effects: No Policy

<table>
<thead>
<tr>
<th></th>
<th>2050</th>
<th>Middle East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
<tr>
<td>Middle East</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2100</th>
<th>Middle East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>USA</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
<tr>
<td>Middle East</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>Base</td>
<td>MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_Base</td>
<td>2.6_MixedBEV</td>
</tr>
<tr>
<td>Middle East</td>
<td>2.6_BEVonly</td>
<td>2.6_BEVonly</td>
</tr>
</tbody>
</table>

-12% -8% -4% 0%
GDP Effects: 2 Degrees

2050

Global
USA
Middle East

Base
MixedBEV
BEVonly
2.6_Base
2.6_MixedBEV
2.6_BEVonly

−12%
−8%
−4%
0%

2100

Global
USA
Middle East

Base
MixedBEV
BEVonly
2.6_Base
2.6_MixedBEV
2.6_BEVonly

−12%
−8%
−4%
0%
Electrification lowers the cost of reaching a 2-degree goal

- The core approach to mitigation
 - Increase efficiency
 - Decarbonize power
 - Electrify whatever possible
- Electrifying transport turns a problem sector into part of the solution.

Cost Reduction from Electrification of Transport

- 19% in 2050 (Mixed BEV/ICE)
- 27% in 2050 (Full Transition to BEV)
- 42% in 2100 (Full Transition to BEV)
Discussion