Modeling Post-2012 Climate Policy Scenarios

Interim Results

Elliot Diringer, Director of International Strategies
Pew Center on Global Climate Change

Leon Clarke, Kate Calvin, Marshall Wise, Jae Edmonds
Joint Global Change Research Institute,
Pacific Northwest National Laboratory/Battelle Memorial Institute
Objectives

• To visualize alternative forms of a “multi-track” climate framework integrating different types of mitigation commitments

• To assess their:
 – **Environmental effectiveness**: Produce near/medium-term effort consistent with 450-600 ppmv CO₂?
 – **Economic efficiency**: Relative to an idealized case of full global cap+trade
 – **Fairness**: Achieve a reasonable distribution of costs?

• Scenarios are illustrative – not “proposals”
 – Real value is in insights, not numbers
The Model

- **O bjECTS-MiniCAM Model** developed and run by Joint Global Change Research Institute, Battelle/UMD

- **Partial equilibrium; Energy-Agriculture-Economy**
 - Explicit energy technologies, regional specifications
 - End-use sectors: buildings, industry, transportation
 - Supply sectors: fossil-fuels, biomass (traditional and modern), electricity, hydrogen, synthetic fuels
 - Integrated agriculture and land use model
 - CO$_2$ only
 - 13 Regions
 - Runs from 1990 to 2095 in 15-year time steps
Overview of MiniCAM
Regions in the Model

- Australia/New Zealand
- Canada
- Europe
- Former Soviet Union
- Japan
- United States
- Africa
- China
- India
- Latin America
- Middle East
- South Korea
- (Rest of) South & East Asia
Developing the Scenarios

- Policies in scenarios reflect:
 - What countries already doing (or discussing)
 - Specific domestic policies, specific sectors targeted
 - The world of commitment types
 - Being discussed in the UNFCCC and beyond

- Action/Commitment Types:
 - Targets
 - Economy wide targets
 - Policy-based commitments
 - National-level sectoral targets, efficiency standards
 - International sectoral agreements
 - Sector-specific targets or standards applied across regions
 - Funds for adaptation and technology
Differentiation within Scenarios

- Regional differentiation taking into account:
 - Regional emissions contexts
 - Fuel mix
 - Energy and GHG intensity and efficiency
 - Economic indicators
 - GDP, GDP/capita
 - Mitigation costs, cost as share of GDP
 - Emissions projections
 - Reference case
 - “Efficient” 450, 550, 650 ppmv stabilization scenarios

- Differentiation is illustrative, not formulaic
• Mix of approaches:
 – Full trading (initially or over time)
 – Policy crediting
 – Intra-sectoral trading
 – Different combinations of the above
Overview of Scenarios

• Baseline scenarios
 - Reference case: “business as usual” pathway
 • Based on CCSP MiniCAM Scenario (updated for 2008)
 - “Efficient” stabilization pathways to 450, 550, & 650 ppmv CO₂

• Six policy scenarios
 - 1A 550: Targets + limited policy commitments
 - 1A 450: Targets + limited policy commitments
 - 1B 450: Targets + broader policy commitments
 - 2 450: Targets + sectoral agreements
 - 3 550: Targets + policy commitments + sectoral agreements
 - 3 450: Targets + policy commitments + sectoral agreements

• It is assumed that world moves to a global trading regime after 2050, however...
 - The focus here is on the near-term
 - A theme of this research is that eventually there needs to be a move to broad coverage.
Scenario 1: Targets + Policies

- Absolute economy-wide targets
- Policy crediting
- Full emissions trading
- Policy-Based Commitments
- Absolute economy-wide targets

Developed Regions

Developing Regions

2005

2050
Scenario 1A 550: Targets and Policies I

<table>
<thead>
<tr>
<th>Region</th>
<th>Electricity</th>
<th>Transportation</th>
<th>Industry</th>
<th>Buildings</th>
</tr>
</thead>
</table>
| Australia/New Zealand, Canada, Europe, Former Soviet Union, Japan, United States | **Economy-Wide Carbon Constraint**
CO2 emissions relative to 2005
(85%, 73%, 60%) | | | |
| Africa | **Power Sector Carbon Intensity** | Relative to 2005
(NA, 70%, 50%) | | |
| China | **Power Sector Carbon Intensity** | Relative to 2005
(70%, 50%, 35%) | **Biofuels Target**
Share of refined liquids
(5%, 7.5%, 10%) | **Industry Carbon Constraint**
Reduction from BAU
(NA, 50%, 80%) |
| India | **Power Sector Carbon Intensity** | Relative to 2005
(70%, 50%, 35%) | **Biofuels Target**
Share of refined liquids
(NA, 5%, 7.5%) | **Fuel Economy Standard**
Increase in mpg over 2005
(NA, 20%, 45%) |
| Korea | **Power Sector Carbon Intensity** | Relative to 2005
(70%, 50%, 35%) | **Biofuels Target**
Share of refined liquids
(NA, 5%, 7.5%) | **Industry Carbon Constraint**
Reduction from BAU
(30%, 50%, 80%) |
| Latin America | **Power Sector Carbon Intensity** | Relative to 2005
(NA, 70%, 50%) | **Biofuels Target**
Share of refined liquids
(5%, 7.5%, 10%) | **Fuel Economy Standard**
Increase in mpg over 2005
(20%, 45%, 75%) |
| Middle East | **Power Sector Carbon Intensity** | Relative to 2005
(70%, 50%, 35%) | **Fuel Economy Standard**
Increase in mpg over 2005
(20%, 45%, 75%) | | |
| Southeast Asia | **Power Sector Carbon Intensity** | Relative to 2005
(70%, 50%, 35%) | **Biofuels Target**
Share of refined liquids
(NA, 5%, 7.5%) | **Fuel Economy Standard**
Increase in mpg over 2005
(NA, 20%, 45%) |
| Africa, China, India, Korea, Latin America, Middle East, Southeast Asia | | | | **Crediting**
% of emissions reductions sold to developed world
(50%, 25%, 0%) |
<table>
<thead>
<tr>
<th>Region</th>
<th>Electricity</th>
<th>Transportation</th>
<th>Industry</th>
<th>Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia/New Zealand, Canada, Europe, Former Soviet Union, Japan, United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economy-Wide Carbon Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 emissions relative to 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(80%, 50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NA, 70%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td>Biofuels Target</td>
<td>Industry Carbon</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>Share of refined liquids</td>
<td>Constraint</td>
</tr>
<tr>
<td></td>
<td>(70%, 33%)</td>
<td></td>
<td>(5%, 11%)</td>
<td>Reduction from BAU</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td>Increase in mpg over 2005</td>
<td>(NA, 30%)</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>(20%, 68%)</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td>Biofuels Target</td>
<td>Industry Carbon</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>Share of refined liquids</td>
<td>Constraint</td>
</tr>
<tr>
<td></td>
<td>(70%, 33%)</td>
<td></td>
<td>(NA, 5%)</td>
<td>Reduction from BAU</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td>Increase in mpg over 2005</td>
<td>(NA, 20%)</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>(20%, 68%)</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td>Biofuels Target</td>
<td>Industry Carbon</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>Share of refined liquids</td>
<td>Constraint</td>
</tr>
<tr>
<td></td>
<td>(70%, 33%)</td>
<td></td>
<td>(5%, 11%)</td>
<td>Reduction from BAU</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td>Increase in mpg over 2005</td>
<td>(NA, 20%)</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>(20%, 68%)</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td>Biofuels Target</td>
<td>Industry Carbon</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>Share of refined liquids</td>
<td>Constraint</td>
</tr>
<tr>
<td></td>
<td>(NA, 70%)</td>
<td></td>
<td>(5%, 11%)</td>
<td>Reduction from BAU</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td>Increase in mpg over 2005</td>
<td>(NA, 20%)</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>(20%, 68%)</td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td>Fuel Economy Standard</td>
<td>Industry Carbon</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>Increase in mpg over 2005</td>
<td>Constraint</td>
</tr>
<tr>
<td></td>
<td>(70%, 33%)</td>
<td></td>
<td>(20%, 68%)</td>
<td>Reduction from BAU</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>Power Sector Carbon Intensity</td>
<td></td>
<td>Biofuels Target</td>
<td>Industry Carbon</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>Share of refined liquids</td>
<td>Constraint</td>
</tr>
<tr>
<td></td>
<td>(70%, 33%)</td>
<td></td>
<td>(NA, 5%)</td>
<td>Reduction from BAU</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td>Increase in mpg over 2005</td>
<td>(NA, 20%)</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005</td>
<td></td>
<td>(20%, 68%)</td>
<td></td>
</tr>
<tr>
<td>Africa, China, India, Korea, Latin America, Middle East, Southeast Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crediting</td>
<td></td>
<td>% of emissions reductions sold to</td>
<td>(50%, 25%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>developed world</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Electricity</td>
<td>Transportation</td>
<td>Industry</td>
<td>Buildings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Australia/New Zealand, Canada, Europe, Former Soviet Union, Japan, United States</td>
<td>Power Sector Carbon Intensity Relative to 2005 (70%, 50%, 18%)</td>
<td>Biofuels Target Share of refined liquids (5%, 7.5%, 20%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, 30%, 75%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
</tr>
<tr>
<td>China</td>
<td>Power Sector Carbon Intensity Relative to 2005 (70%, 50%, 18%)</td>
<td>Biofuels Target Share of refined liquids (NA, 5%, 15%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, 30%, 75%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
</tr>
<tr>
<td>India</td>
<td>Power Sector Carbon Intensity Relative to 2005 (70%, 50%, 18%)</td>
<td>Biofuels Target Share of refined liquids (5%, 7.5%, 20%)</td>
<td>Industry Carbon Constraint Reduction from BAU (30%, 50%, 90%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (20%, 40%, 100%)</td>
</tr>
<tr>
<td>Korea</td>
<td>Power Sector Carbon Intensity Relative to 2005 (70%, 50%, 18%)</td>
<td>Biofuels Target Share of refined liquids (5%, 7.5%, 20%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, 30%, 75%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
</tr>
<tr>
<td>Latin America</td>
<td>Power Sector Carbon Intensity Relative to 2005 (NA, 70%, 25%)</td>
<td>Biofuels Target Share of refined liquids (5%, 7.5%, 20%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, 30%, 75%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
</tr>
<tr>
<td>Middle East</td>
<td>Power Sector Carbon Intensity Relative to 2005 (70%, 50%, 18%)</td>
<td>Fuel Economy Standard Increase in mpg over 2005 (20%, 45%, 150%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, 30%, 75%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>Power Sector Carbon Intensity Relative to 2005 (70%, 50%, 18%)</td>
<td>Biofuels Target Share of refined liquids (NA, 5%, 15%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, 30%, 75%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
</tr>
<tr>
<td>Africa, China, India, Korea, Latin America, Middle East, Southeast Asia</td>
<td>Economy-Wide Carbon Constraint</td>
<td>CO2 emissions relative to 2005 (80%, 50%, 20%)</td>
<td>Biofuels Target Share of refined liquids (NA, NA, 10%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, NA, 65%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel Economy Standard Increase in mpg over 2005 (NA, NA, 40%)</td>
<td>Fuel Economy Standard Increase in mpg over 2005 (NA, NA, 40%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, NA, 65%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industry Carbon Constraint Reduction from BAU (NA, NA, 65%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, NA, 65%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
<td>Building Energy Efficiency Constraint Increase over 2005 (NA, 20%, 80%)</td>
<td>Industry Carbon Constraint Reduction from BAU (NA, NA, 65%)</td>
</tr>
</tbody>
</table>

Crediting

% of emissions reductions sold to developed world (50%, 25%, 0%)
Scenario 2: Targets and Sectoral Agreements

- Absolute economy-wide targets
- Sectoral agreements
- Funding commitments

Developed Regions

- Emissions trading within sectors, across regions

Developing Regions

- Policy-Based Commitments
- Absolute economy-wide targets

2050

Full emissions trading
Scenario 2 450: Targets and Sectoral Agreements

<table>
<thead>
<tr>
<th>Electricity</th>
<th>Transportation</th>
<th>Industry</th>
<th>Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia/New Zealand, Canada, Europe, Former Soviet Union, Japan, United States</td>
<td>Economy-Wide Carbon Constraint</td>
<td>CO2 emissions relative to 2005</td>
<td>(80%, 50%, 20%)</td>
</tr>
<tr>
<td>Africa</td>
<td>CCS Subsidy</td>
<td>Percent of incremental cost</td>
<td>(100%, 75%, 50%)</td>
</tr>
<tr>
<td>China</td>
<td>Low Carbon Portfolio Standard</td>
<td>Percent of electricity</td>
<td>(35%, 50%, 90%)</td>
</tr>
<tr>
<td>India</td>
<td>Biofuels Target</td>
<td>Share of refined liquids</td>
<td>(5%, 7.5%, 25%)</td>
</tr>
<tr>
<td>Korea</td>
<td>Fuel Economy Standard</td>
<td>Increase in mpg over 2005</td>
<td>(20%, 45%, 188%)</td>
</tr>
<tr>
<td>Latin America</td>
<td>Industry Carbon Constraint</td>
<td>Reduction from BAU</td>
<td>(NA, 30%, 80%)</td>
</tr>
<tr>
<td>Middle East</td>
<td>Building Energy Efficiency Constraint</td>
<td>Increase over 2005</td>
<td>(20%, 40%, 125%)</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADAPTATION FUND

<table>
<thead>
<tr>
<th>Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States, Canada, Europe, Japan, Australia/New Zealand, Former Soviet Union</td>
</tr>
</tbody>
</table>

Will be modeled in Phase II
Scenario 3: Targets + Policies + Sectoral

- Absolute economy-wide targets
- Sectoral agreements
- Funding commitments

Developed Regions

Emissions trading within sector, across regions

Developing Regions

Policy-Based Commitments

Economy-wide absolute targets

2005

2050

Full emissions trading
Scenario 3 550: Targets + Policies + Sectoral

<table>
<thead>
<tr>
<th>Electricity</th>
<th>Transportation</th>
<th>Industry</th>
<th>Buildings</th>
</tr>
</thead>
</table>
| Australia/New Zealand, Canada, Europe, Former Soviet Union, Japan, United States | **Economy-Wide Carbon Constraint**
CO2 emissions relative to 2005
(85%, 73%, 60%) | | |
| Africa | **Biofuels Target**
Share of refined liquids
(NA, NA, 5%) | | |
| | **Fuel Economy Standard**
Increase in mpg over 2005
(NA, NA, 20%) | | |
| China | **Biofuels Target**
Share of refined liquids
(5%, 7.5%, 10%) | | **Building Energy Efficiency Constraint**
Increase over 2005
(NA, 20%, 40%) |
| | **Fuel Economy Standard**
Increase in mpg over 2005
(20%, 45%, 75%) | | |
| India | **Power Sector Carbon Intensity**
Relative to 2005
(70%, 50%, 35%) | **Biofuels Target**
Share of refined liquids
(NA, 5%, 7.5%) | **Building Energy Efficiency Constraint**
Increase over 2005
(NA, 30%, 50%) |
| | **Fuel Economy Standard**
Increase in mpg over 2005
(NA, 20%, 45%) | **Industry Carbon Constraint**
Reduction from BAU
(NA, 30%, 50%) | |
| Korea | **Biofuels Target**
Share of refined liquids
(5%, 7.5%, 10%) | | **Building Energy Efficiency Constraint**
Increase over 2005
(20%, 40%, 50%) |
| | **Fuel Economy Standard**
Increase in mpg over 2005
(20%, 45%, 75%) | | |
| Latin America | **Biofuels Target**
Share of refined liquids
(5%, 7.5%, 10%) | | **Building Energy Efficiency Constraint**
Increase over 2005
(NA, 20%, 40%) |
| | **Fuel Economy Standard**
Increase in mpg over 2005
(20%, 45%, 75%) | | |
| Middle East | **Fuel Economy Standard**
Increase in mpg over 2005
(20%, 45%, 75%) | | **Building Energy Efficiency Constraint**
Increase over 2005
(NA, 20%, 40%) |
| Southeast Asia | **Biofuels Target**
Share of refined liquids
(NA, 5%, 7.5%) | | **Building Energy Efficiency Constraint**
Increase over 2005
(NA, 20%, 40%) |
| | **Fuel Economy Standard**
Increase in mpg over 2005
(NA, 20%, 45%) | | |

Adaptation Fund

United States, Canada, Europe, Japan, Australia/New Zealand, Former Soviet Union
Contribute annually 0.25% value of emission allowances
Scenario 3 450: Targets + Policies + Sectoral

<table>
<thead>
<tr>
<th>Electricity</th>
<th>Transportation</th>
<th>Industry</th>
<th>Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia/New Zealand, Canada, Europe, Former Soviet Union, Japan, United States</td>
<td>Economy-Wide Carbon Constraint</td>
<td>Industry Carbon Constraint</td>
<td>Building Energy Efficiency Constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>Biofuels Target</td>
<td>Building Energy Efficiency Constraint</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td>Share of refined liquids</td>
<td>(NA, NA, 11%)</td>
<td>(NA, NA, 45%)</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NA, NA, 45%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Biofuels Target</td>
<td>Biofuels Target</td>
<td>Building Energy Efficiency Constraint</td>
</tr>
<tr>
<td></td>
<td>Share of refined liquids</td>
<td>Share of refined liquids</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td>(5%, 7.5%, 23%)</td>
<td>(NA, 5%, 17%)</td>
<td>(NA, NA, 45%)</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td>Fuel Economy Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase in mpg over 2005</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20%, 50%, 169%)</td>
<td>(NA, 20%, 101%)</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Power Sector Carbon Intensity</td>
<td>Biofuels Target</td>
<td>Building Energy Efficiency Constraint</td>
</tr>
<tr>
<td></td>
<td>Relative to 2005 (70%, 45%, 16%)</td>
<td>Share of refined liquids</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NA, 5%, 17%)</td>
<td>(NA, NA, 45%)</td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td>Fuel Economy Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase in mpg over 2005</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NA, 20%, 101%)</td>
<td>(NA, 20%, 101%)</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Biofuels Target</td>
<td>Building Energy Efficiency Constraint</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td>Share of refined liquids</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5%, 7.5%, 23%)</td>
<td>(20%, 50%, 169%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase in mpg over 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NA, 20%, 101%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>Biofuels Target</td>
<td>Building Energy Efficiency Constraint</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td>Share of refined liquids</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5%, 7.5%, 23%)</td>
<td>(20%, 50%, 169%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase in mpg over 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20%, 50%, 169%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td>Fuel Economy Standard</td>
<td>Building Energy Efficiency Constraint</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td>Increase in mpg over 2005</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20%, 50%, 169%)</td>
<td>(NA, 20%, 101%)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>Biofuels Target</td>
<td>Building Energy Efficiency Constraint</td>
<td>Increase over 2005</td>
</tr>
<tr>
<td></td>
<td>Share of refined liquids</td>
<td>Increase in mpg over 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NA, 5%, 17%)</td>
<td>(NA, 20%, 101%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Economy Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase in mpg over 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NA, 20%, 101%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptation Fund

Fund

United States, Canada, Europe, Japan, Australia/New Zealand, Former Soviet Union

Contribute annually 0.25% value of emission allowances
Background on the Reference Scenario
The reference scenario envisions a growing global economy with an evolution in the distribution of economic activity.
Overview of Technology Assumptions

- **Abundant fossil resources**
 - An eventual decline in conventional crude production accompanied by a gradual increase in production from unconventional sources

- **Nuclear competitive with fossil electricity sources**

- **CCS available at reasonable cost with no limits on deployment in most regions**

- **Wind competitive in the near-term, solar later; limits on wind supply, and backup requirements for solar and wind on the grid**

- **Roughly 1% annual improvement in end use efficiency globally**

Thinking About Pathways to 450 ppmv
Mitigation: A Long-Term Strategic Challenge

Stabilizing CO₂ concentrations at any level means that global CO₂ emissions must peak and then decline forever.
Mitigation in 2005-2050 is Just the Start

- The bulk of emissions reductions will need to take place beyond 2050.
- The tighter the concentration, the greater emissions reductions in the near-term.
- Ultimately, achieving large-scale future reductions will require that all countries and sectors participate in mitigation.
- These scenarios explore differing policy architectures on a transition toward a comprehensive long-term policy regime.

We are considering “transition” measures through 2050 on the path to 450 ppmv stabilization. What is a reasonable transition emissions pathway through 2050?

- **Global emissions consistent with fully-efficient pathways.**
 - Concentrations should be on a path to roughly 450 ppmv, and there should be some degree of economic balancing between near- and mid-term reductions.

- **Limited reliance on overshoot and negative emissions.**
 - A wide range of concentration levels are viable in the very long-term given the option for overshoot, particularly if bio&CCS is available. These scenarios will not be dramatically dependent on overshoot and/or negative emissions.

- **A smooth transition to fuller coverage and market-based mechanisms after 2050.**
 - The distribution of emissions among sectors and regions in 2050 should not deviate dramatically from distribution in efficient solution.
 - Global emissions through 2050 should roughly match efficient, long-term stabilization pathways.
There are multiple global emissions pathways to any long-term target.

Fossil and Industrial emissions pathway depends on (1) discount rate, (2) overshoot versus stabilization, (3) emissions drivers (e.g., population, GDP), (4) technology (e.g., bio&CCS), (5) coverage (e.g., is terrestrial carbon priced)
The emissions pathway we will be choosing will roughly fit a 450 ppmv scenario.
Overview of Results
To Keep in Mind in Interpreting the Results

- In each scenario, important to distinguish between broad architecture and stringency of assumed policies
 - Architecture: the mix of instruments (e.g., economy-wide caps)
 - Stringency: the numbers (e.g., the specific cap levels)
- Equity and efficiency (cost-effectiveness) interact but are not the same
 - It is feasible to have equitable distributions of costs that are not cost-effective and vice versa
- It is important to distinguish between costs with and without trading
- This analysis does not address the economic benefits of avoided climate impacts
Annual CO₂ Emissions through 2095

- Reference
- Efficient 650
- Efficient 550
- Efficient 450

Year: 2005, 2020, 2035, 2050, 2065, 2080, 2095

Emission Units: GtC/yr

Key:
- 1A 550
- 1A 450
- 1B 450
- 2 450
- 3 550
- 3 450
Annual CO₂ Emissions through 2050

- Reference
- Efficient 650
- Efficient 550
- Efficient 450
- 1A 550
- 1A 450
- 1B 450
- 2 450
- 3 550
- 3 450

GtC/yr

2005 2020 2035 2050
Note that different stringencies could lead to different efficiencies.
Global Emissions and Costs: 2035
Global Emissions and Costs: 2050

Emissions Reduction Costs (Fraction of GDP)

- Efficient 650
- Efficient 550
- Efficient 450
- IA 550
- IA 450
- IB 450
- 2 450
- 3 550
- 3 450
The Effect of the Increasing Challenge

Electric sector low-carbon standard not eliminating freely-emitting coal.

Coverage of policy commitments must apply to virtually all sectors in the developing regions.

All sectors covered, including CO2-based sectoral policies.

Without expanded policy coverage, limited coverage makes 2050 infeasible.
The Increasing Challenge

• The efficiency losses from the multi-track approaches explored in this analysis may be moderate in the near-term...

• But over time, as the abatement burden increases, they become increasingly acute.
Sectoral Emissions: 2035

Idealized stabilization scenarios

- Industry
- Buildings
- Transport
- Electricity
Sectoral Emissions: 2050

Sectoral Emissions: 2050

Idealized stabilization scenarios

GtC/yr

Industry
Buildings
Transport
Electricity

Reference Efficient 650 Efficient 550 Efficient 450 IA 550 3 550 IA 450 IB 450 2 450 3 450
Abatement by Region: 2035

With trading, emissions reductions are completed where they are least costly.
Abatement Cost by Region: 2035

With trading, emissions reductions are completed where they are least costly.
Policy approaches or sectoral approaches can lead to a different distribution of emissions reductions.
Policy approaches or sectoral approaches can lead to a different distribution of emissions reductions.
Regional Cost Distribution: 2035

Trading redistributes costs.
CCS Deployment Fund

Global Electricity Production, CCS Fund Recipients: 2035

CCS fund increases CCS fund in recipient nations; lowers cost of electricity, reducing impact on total demand.
Summary

- Ultimately, all sectors and regions must participate in emissions mitigation to achieve stabilization.
- These scenarios have explored near- and mid-term policy architectures in the context of long-term stabilization.
- A range of architectures could lead to emissions reductions in the near- and mid-term that are consistent with long-term stabilization at levels at roughly 450 ppmv.

 - But a transition toward broad coverage will be required toward mid-century to contain costs.
- The greater the overlap and intersections between policy approaches, the more difficult to predict the outcome.
- Deviations from full trading will reduce the absolute economic efficiency of any architecture; the degree of deviation depends on the mechanisms included in the architecture for trading.
- A variety of trading mechanisms can be used to redistribute costs among regions.
Concluding Thoughts

• Effectiveness
 – A range of policy mixes can produce a near/medium-term effort consistent with long-term stabilization

• Fairness
 – A range of policy mixes can produce a reasonable distribution of cost

• Efficiency
 – A transition to full global trading and coverage is key to economic efficiency in the long term
 – In the nearer term, can we tolerate some trade-off of efficiency to achieve the broad participation needed to put countries on track toward the long-term objective?
www.pewclimate.org