Managing the Transition to Climate Stabilization

Richard Richels, EPRI
Thomas Rutherford, U. of Col.
Geoffrey Blanford, EPRI
Leon Clarke, PNNL

Joint Global Climate Change Research Institute
University of Maryland
May 23, 2007
Participants in CCSP

• MIT (IGSM – Integrated Global Systems Model)
 – Henry (Jake) Jacoby
 – John Reilly
• PNNL (MiniCAM – Mini Climate Assessment Model)
 – James (Jae) Edmonds
 – Hugh Pitcher
• EPRI (MERGE Model for Evaluating Regional and Global Effects of greenhouse gas reductions)
 – Richard Richels
• Coordinator
 – Leon Clarke
CCSP Study Design

- All models assume existing climate mitigation programs (Kyoto, U.S. intensity target) but then assume perfect “what” “where” and “when” flexibility going forward.
- Assumptions (e.g., population, economic growth, technological change) developed individually by the modeling teams.
- No likelihoods assigned to any scenarios or parameters.
 - Teams directed to develop assumptions they consider “plausible” and “meaningful”.
 - These are not the only sets of assumptions that these three modeling teams could have developed.
CCSP Study Design

- Develop Reference (Business as Usual) Case
- Stabilize total radiative forcing from CO₂, N₂O, CH₄, HFCs, PFCs, and SF₆

Four stabilization scenarios roughly consistent with 450 ppmv through 750 ppmv CO₂, along with one reference case.

<table>
<thead>
<tr>
<th>Stabilization Level</th>
<th>Long-Term Radiative Forcing Limit (Wm⁻² relative to pre-industrial)</th>
<th>Approximate 2100 CO₂ Limit (ppmv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 4</td>
<td>6.7</td>
<td>750</td>
</tr>
<tr>
<td>Level 3</td>
<td>5.8</td>
<td>650</td>
</tr>
<tr>
<td>Level 2</td>
<td>4.7</td>
<td>550</td>
</tr>
<tr>
<td>Level 1</td>
<td>3.4</td>
<td>450</td>
</tr>
</tbody>
</table>
Goal of Present Study

• To extend earlier work done as part of US Climate Change Science Program
• Provide sensitivity analysis focusing on:
 – Policy design
 – Near-term transition constraints
 – Coalition membership
 – Technology availability
Overview of MERGE 5.5

• Intertemporal optimization model with 200 year timeframe
• Each region maximizes its own utility
• Prices of each GHG determined endogenously, i.e. no GWPs
• Top down model of economic growth

• Process model of energy sector, with **new additions:**
 - CCS Technologies
 • Existing plants
 • New plants
 - Considers market *and* nonmarket costs of nuclear power
CAVEAT:

THIS IS NOT A COST BENEFIT ANALYSIS
Reference Case Radiative Forcing
Reference *without* Annex B Emissions

![Graph showing radiative forcing from OGG and CO2 emissions with targets for 2010-2100.](image)

- **3.4 Target**
- **4.7 Target**

Legend:
- Black: RF from OGG
- Blue: RF from CO2
- Green: 4.7 Target
- Red: 3.4 Target
Two Policy Scenarios

• “First Best” (1B):
 When and where flexibility (except in 2010)

• “Third Best” (3B):
 Near-term transition constraints on Annex B countries
 Non-Annex B does not participate in near-term

3B Designed to Reflect Realistic Policies
3B Transition Constraints for Annex B

Historic Emissions

Transition Constraints

"Hot Air"

Kyoto Commitments

Post-transition emissions cannot increase

USA

Kyoto Coalition

EEFSU
Two Technology Scenarios

• “Optimistic”: All technologies available

• “Pessimistic”: New nuclear and carbon capture and sequestration (CCS) are not available in electric sector
Electricity Generation Technologies in MERGE 5.5

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRO</td>
<td>Hydroelectric</td>
</tr>
<tr>
<td>NUC-R</td>
<td>Remaining initial nuclear</td>
</tr>
<tr>
<td>GAS-R</td>
<td>Remaining initial gas-fired</td>
</tr>
<tr>
<td>OIL-R</td>
<td>Remaining initial oil-fired</td>
</tr>
<tr>
<td>COAL-R</td>
<td>Remaining initial coal-fired</td>
</tr>
<tr>
<td>NUC-N</td>
<td>New nuclear</td>
</tr>
<tr>
<td>GAS-N</td>
<td>Advanced combined-cycle</td>
</tr>
<tr>
<td>COAL-N</td>
<td>Pulverized coal without CO₂ recovery</td>
</tr>
<tr>
<td>RNW-LC</td>
<td>Low-cost carbon-free technologies (quantity constrained)</td>
</tr>
<tr>
<td>RNW-HC</td>
<td>High-cost carbon-free technologies (unlimited quantity)</td>
</tr>
<tr>
<td>GAS-NCS</td>
<td>New gas with carbon capture and sequestration</td>
</tr>
<tr>
<td>COAL-NCS</td>
<td>New coal with carbon capture and sequestration</td>
</tr>
<tr>
<td>COAL-RCS</td>
<td>Remaining coal with carbon capture and sequestration</td>
</tr>
</tbody>
</table>
Non-electric Energy Supplies in MERGE 5.5

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLDU</td>
<td>Coal – direct uses</td>
</tr>
<tr>
<td>OILNON</td>
<td>Oil (10 cost categories)</td>
</tr>
<tr>
<td>GASNON</td>
<td>Gas (10 cost categories)</td>
</tr>
<tr>
<td>BFUEL</td>
<td>Biofuels (ethanol, biodiesel, etc.)</td>
</tr>
<tr>
<td>SYNF</td>
<td>Synfuels (coal to liquids)</td>
</tr>
<tr>
<td>RNW-NE</td>
<td>Non-electric high-cost carbon-free technologies (unlimited quantity)</td>
</tr>
</tbody>
</table>

Reference Case Relies Heavily on Synfuels
Scenario Design

TARGET

3.4 RF

3rd Best

First Best

Third Best

Opt.

Opt.

Opt.

Opt.

POLICY

4.7 RF

3rd Best

First Best

Third Best

Opt.

Opt.

Opt.

Opt.

TECHNOLOGY

8 SCENARIOS
Global Carbon Emissions

- 1B
- 3B

(Optimistic Technology)

BAU

4.7 RF

3.4 RF

Billion tons Carbon

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Annex B Carbon Price with 3.4 RF Target

Transition: Non-Annex B OUT

3B

1B

2000$US per ton Carbon

Opt.
Pess.
USA GDP Loss from Reference with 3.4 RF Target

Opt.
Pess.

3B
1B

© 2006 Electric Power Research Institute, Inc. All rights reserved.
Annex B Carbon Price with 4.7 RF Target

Transition:
Annex B Constrained
Non-Annex B OUT

Optimal

Opt.
Pess.
USA GDP Loss from Reference with 4.7 RF Target

3B

1B

© 2006 Electric Power Research Institute, Inc. All rights reserved.
U.S. Electric Generation, Optimistic Technology
U.S. Electric Generation, Pessimistic Technology

![Graph showing electric generation for different technologies and scenarios.]

Reference, 4.7 RF Target, 3.4 RF Target (1B Policy)
Global Discounted Sum of Economic Cost
At 5% through 2200

2000$US Trillions

© 2006 Electric Power Research Institute, Inc. All rights reserved.

Optimistic 3B

Pessimistic 3B

4.7 Target

1B

3B

Pessimistic 3B

1B

Optimistic 3B

3.4 Target

% GDP Loss from Reference

© 2006 Electric Power Research Institute, Inc. All rights reserved.