Estimating Global Groundwater Resources

Catherine Yonkofski1, DJ Watson1, Mohamad Hejazi1,2

1. PNNL
2. JGCRI
Objective

- Incorporate non-renewable groundwater extraction cost-curves into GCAM
- Under what circumstances could deep, potable groundwater serve as a feasible alternative resource for drinking water or agriculture?
Overview

- Estimate global groundwater availability
- Construct depletable resource cost curves for non-renewable groundwater
- Apply resource cost curve methodology at the river basin level across the globe
- Generate GCAM inputs based on groundwater extraction costs
Estimate Global Groundwater Availability

Groundwater Volume = Saturated Thickness x Aquifer Areal Extent x Porosity

GLobal HYdrogeology MaPS (GLHYMPS) Gleeson et al. (2014)
Estimate Global Groundwater Availability

Groundwater Volume = Saturated Thickness x Aquifer Areal Extent x Porosity

DeGraaf et al. (2015)
Results: Available Groundwater Volume

Previous Estimates

- Nace (1969): 1-7
- Nace (1971): 4-60
- Garmonov (1974): 23.4 (3.6 active)
- L'Vovich (1974): 60 (4 active)
- NRC (1986): 15.3
- Gleeson et al. (2016): 22.6 (0.35 young)

Total Volume: 5.85 Million km3

Preliminary Results – Please do not cite or quote
We’ve generated a framework that defines a cost function for production from a single well based on an analytical GW flow solution.

Current costs reflect the cost of electricity to produce water and well drilling/installation.
Unit Cost Breakdown

Preliminary Results – Please do not cite or quote
Unit Cost Comparison

USGS study evaluated groundwater unit prices for the North Atlantic Region (Cederstrom, 1970)

• Included capital costs, maintenance costs, and power costs.
• Evaluated production costs in variable geologic materials: coastal plain, consolidated rocks, and glacial deposits.
Element

- Optimize well spacing based on maximum production.
- Hydrologic units are assumed to be identical.
- The solution scheme calculates production and unit costs ($/m^3 water) for one hydrologic unit.
- We apply the solution to the entire aquifer of interest.
 - The unit cost is the same
 - Total volume produced is sum of all production
Results: Global Unit Costs of Groundwater Production

Preliminary Results – Please do not cite or quote
Conclusions and Next Steps

- Global aquifer properties from previous studies were combined to estimate the volume of groundwater available within range of reported global values.
 - Specific regional studies may replace broad global property assumptions.

- A framework was created defining a cost function based on an analytical GW flow solution.
 - Unit costs reflect the cost of electricity and well drilling/installation.
 - Results were compared to groundwater unit cost estimates from other methods.
 - Initial results calculated groundwater unit costs based on a relatively dense network of production wells over a fixed amount of time. Next steps will reduce number of wells and prolong the duration of production.
 - Other capital costs (the pump, water treatment, and transport) may be added.
Questions?

Catherine Yonkofski, Ph.D.
Subsurface Scientist
Energy and Environment Directorate
Hydrology Group

Pacific Northwest National Laboratory
Battelle Seattle Research Center
1100 Dexter Ave. N. Suite 367
Seattle, WA 98109
Phone: (206) 528-3450

catherine.yonkofski@pnnl.gov

National Research Council (NRC), 1986. Global change in the geosphere-biosphere: initial priorities for an IGBP. National Academy Press. Ch. 6, 72-82.