Finding common ground when experts and models disagree:

Belief dominance and Climate Change R&D Policy

Erin Baker, University of Massachusetts
Valentina Bosetti, Bocconi University and FEEM
Ahti Salo, Aalto University

Presented at Integrated Assessment Workshop, Joint Global Change Research Institute, College Park, December 2, 2015
Deep Uncertainty

- Conflicting experts or models
Deep Uncertainty - Approaches

- **Aggregate beliefs:**
 Clemen & Winkler; Cooke; Lichtendahl et al

- **Dynamic Decision making under uncertainty and learning:** (Kolstad, Baker, Lemoine, Pyndyck)

- **Criticism:**
 - “lacking externally consistency”
 - Mathematically resolve disagreement resulting in a single best recommendation
Deep Uncertainty - Approaches

- Retain individual beliefs
 - Ambiguity Aversion, robust optimization
 - Lacking internal consistency
 - Mathematically resolve disagreement resulting in a single best recommendation

- Synthesize in the context of a decision
- Robust Decision Making
 - Evaluates a small number of alternatives
 - Iterates to develop alternatives
Our approach: Robust Portfolio Decision Analysis

- Considers portfolios of alternatives (technologies, policies)
 - \{high R&D into nuclear; solar subsides; 450ppm; cap&trade\}
 - \{low R&D into nuclear; solar subsidies; carbon tax\}

- Results in a set of “good” alternatives
 - \{portfolio 1, portfolio 7, portfolio 10, …\}

- Provides insights about good individual projects
 - core projects = \{solar subsidies, …\}

All sets on this slide are purely illustrative; these are not results.
Our approach: Robust Portfolio Decision Analysis

- Considers *portfolios of alternatives* (technologies, policies)
 - \{high R&D into nuclear; solar subsides; 450ppm; cap&trade\}
 - \{low R&D into nuclear; solar subsidies; carbon tax\}
- Results in a *set of “good” alternatives*
 - \{portfolio1, portfolio 7, portfolio 10,…\}
- Provides insights about *good individual projects*
 - core projects = \{solar subsidies, …\}

May help to open up the dialogue on climate change. “Emphasize solutions and benefits”.

All sets on this slide are purely illustrative; these are not results.

RPDA: theoretical framework

- Belief dominance
- From non-dominated portfolios to robust individual alternatives
Belief Dominance

An alternative* \(\mathbf{x} \) dominates an alternative \(\mathbf{x}' \) over a set \(\Phi \) of probability distributions if:

\[
\int U(x; z) f(z; x) \, dz \geq \int U(x'; z) f(z; x') \, dz \quad \forall f \in \Phi
\]

\(\mathbf{x} \) is a vector of decision variables
\(Z \) is a random variable with probability distribution \(f \)
\(U \) is an objective function

*An “alternative” may be a portfolio.
Belief Dominance (example)

An alternative* \mathbf{x} dominates an alternative \mathbf{x}' over a set Φ of probability distributions if:

\[
\int U(\mathbf{x}; z)f(z; \mathbf{x}) \, dz \leq \int U(\mathbf{x}'; z)f(z; \mathbf{x}') \quad \forall f \in \Phi
\]

x is a vector of decision variables (investments into technology R&D, solar, nuclear,...)

Z is a random variable with probability distribution f (outcomes of technical change, such as cost; distribution depends on investment)

U is an objective function (The total cost of abatement, derived from an IAM)

*An “alternative” may be a portfolio.
Dominance Concepts

- **Belief**: alternative x dominates alternative x'
 \[
 \int U(x; z)f(z; x)\,dz \geq \int U(x'; z)f(z; x')\,dz \quad \forall f \in \Phi
 \]

- **Stochastic**: distribution f dominates distribution g
 \[
 \int U(x; z)f(z)\,dz \geq \int U(x; z)g(z)\,dz \quad \forall U \in V
 \]

- **Pareto**: alternative x dominates alternative x'
 \[
 \int U_i(x; z)f(z)\,dz \geq \int U_i(x; z)f(z)\,dz \quad \forall U_i
 \]
From portfolios to individual alternatives

- Each portfolio is made up of individual projects $i=1..I$
- Define $x_i=1$ if project i is funded and 0 otherwise
- Define a portfolio $\bar{x} \equiv (x_1, ..., x_N)$
- Let $\text{ND} = \{\text{non-dominated portfolios}\}$

$\text{core} \equiv \{i \mid x_i = 1 \ \forall \bar{x} \in \text{ND}\}$

$\text{ext} \equiv \{i \mid x_i = 0 \ \forall \bar{x} \in \text{ND}\}$

$\text{bord} \equiv \{i \mid i \notin \text{core} \text{ and } i \notin \text{ext}\}$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

project b is in exterior; project d is in core
Proof of concept: Public energy technology R&D portfolios
Proof of concept: Energy Technology R&D Portfolio in Response to Climate Change.

Given a Representative Concentration Pathway (RCP) of 2.6 w/m^2 ($\sim 450\text{ ppm}$):

- R&D Investment
- Technology Performance
- IAM chooses Implementation
- Value (Cost)

3 sets of elicitations on 5 technologies plus combined
The general model

$$\min_x \int \left\{ TAC(z, s) + \kappa B(x) \right\} f_\tau(z; x) dz$$

For $$s = 2.6 (~450\text{ppm})$$

$$\sum_j x_{ij} = 1 \ \forall i$$

$$x_{ij} = 1$$ if technology $$i$$ is invested in at the $$j$$th funding level; 0 otherwise

$$i = \text{solar, nuclear, CCS, bio-elec, bio-fuel}$$

$$j = \text{low, mid, high}$$

$$TAC(z, s) = \text{total abatement cost for stabilization } s, \text{ tech outcome } z$$

$$B(x) = \text{total R&D investment for portfolio } x$$

$$\kappa = \text{opportunity cost of investment}$$

$$f_\tau(z; x) = \text{pdf of } z \text{ from team } \tau \text{ given investment portfolio } x$$
The computational model

\[H(x, \tau) \equiv \sum_{l=1}^{1000} p_\tau(z_l; x) TAC(z_l, s) + \kappa B(x) \]

s.t. \(\sum_j x_{ij} = 1 \ \forall i \)

- \(x \) belief dominates \(x' \) if \(H(x, \tau) \leq H(x', \tau) \ \forall \tau \)

\(x_{ij} = 1 \) if technology \(i \) is invested in at the \(j \)th funding level; 0 otherwise

\(i = \) solar, nuclear, CCS, bio-elec, bio-fuel

\(j = \) low, mid, high

\(TAC(z, s) = \) total abatement cost for stabilization \(s \), tech outcome \(z \)

\(B(x) = \) total R&D investment for portfolio \(x \)

\(\kappa = \) opportunity cost of investment

\(p_\tau \) is the discrete probability of outcome \(z_l \) given investment \(x \). We use importance sampling to estimate \(p_\tau \).
Results: non-dominated portfolios

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Technologies</th>
<th>Objectives ENPV (cost in billions of $2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solar</td>
<td>Nuc</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>6</td>
<td>Mid</td>
<td>Mid</td>
</tr>
<tr>
<td>7</td>
<td>High</td>
<td>Mid</td>
</tr>
<tr>
<td>8</td>
<td>Mid</td>
<td>Mid</td>
</tr>
<tr>
<td>9</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>10</td>
<td>Low</td>
<td>Mid</td>
</tr>
</tbody>
</table>

10 out of 243 total are non-dominated
Results: core and exterior projects

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Technologies</th>
<th>Objectives ENPV (cost in billions of $2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solar</td>
<td>Nuc</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>6</td>
<td>Mid</td>
<td>Mid</td>
</tr>
<tr>
<td>7</td>
<td>High</td>
<td>Mid</td>
</tr>
<tr>
<td>8</td>
<td>Mid</td>
<td>Mid</td>
</tr>
<tr>
<td>9</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>10</td>
<td>Low</td>
<td>Mid</td>
</tr>
</tbody>
</table>

BE high is in core; Nuc low is in exterior
Normalized ENPV of TAC by team

Combined Harvard FEEM UMass
Normalized ENPV of TAC by team: some are less robust
Results: core and exterior of “robust” non-dominated

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Technologies</th>
<th>Objectives ENPV (cost in billions of $2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solar</td>
<td>Nuc</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>6</td>
<td>Mid</td>
<td>Mid</td>
</tr>
<tr>
<td>8</td>
<td>Mid</td>
<td>Mid</td>
</tr>
</tbody>
</table>

core = {BE high; CCS mid}

exterior = {Solar high; nuclear low; BF low}
Future work – When Models Disagree

- Model uncertainty and parametric uncertainty

\[H(x; \tau, m) = \sum_{i=1}^{1000} p_{\tau x}(z_i) \left[TAC_m(z_i; s) \right] + \kappa B_x \]

- \(\tau \) is beliefs over parametric uncertainty; \(m \) represents individual models

- portfolio \(x \) belief dominates \(x' \) if: \(H(x; \tau, m) \leq H(x'; \tau, m) \) \(\forall \tau, m \)
Conclusions

- Belief Dominance is a new concept that allows analysts to derive a set of good alternatives under conflicting beliefs.
 - Synthesizes beliefs in a decision context
 - Avoids worst-case analysis
- RPDA leads to implications about individual alternatives
 - Example: A high investment into bio-electricity was robust across all beliefs
- By focusing on a set of good alternatives, RPDA uses the best available knowledge to support decision making in a way that preserves flexibility for decision makers.
A structured process for eliciting subjective probability distributions from experts about items of interest to decision makers.
TEaM Results

Solar LCOE

<table>
<thead>
<tr>
<th>Solar LCOE</th>
<th>Nuclear capital cost</th>
<th>Biofuels combined</th>
<th>Bio-electricity combined</th>
<th>CCS combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Mid</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>6.7</td>
<td>16</td>
<td>132</td>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>673</td>
<td></td>
</tr>
</tbody>
</table>
Covering Distributions with Importance Sampling

Nominal (elicited) distributions $q_{ij}(x_i)$

Covering (importance) distribution $p_i(x_i)$ chosen to span the range of nominal distributions and sample from the area of interest.

Sampling distribution is multiplied by the likelihood ratio q_i/p_i to remove sampling bias.