Introduction to the Global Change Assessment Model (GCAM)

KATE CALVIN, LEON CLARKE, PAGE KYLE, MARSHALL WISE
(ON BEHALF OF THE ENTIRE GCAM TEAM)

Joint GCAM Community Modeling Meeting and GTSP Technical Workshop
Joint Global Change Research Institute
College Park, Maryland, USA

Wednesday, October 22, 2014
Outline

Brief introduction to Integrated Assessment Models

Overview of GCAM

Detailed information on GCAM’s
- Economic assumptions,
- Energy system,
- Agriculture and land use system,
- Emissions,
- Policies,
- Climate system, and
- Solution algorithm.

Frequently asked questions
What is an Integrated Assessment Model (IAM)?

IAMs integrate human and natural Earth system climate science.
- IAMs provide insights that would be otherwise unavailable from disciplinary research.
- IAMs capture interactions between complex and highly nonlinear systems.
- IAMs provide natural science researchers with information about human systems such as GHG emissions, land use and land cover.

IAMs provide important, science-based decision support tools.
- IAMs support national, international, regional, and private-sector decisions.
IAMs Are Strategic in Nature

- IAMs were designed to provide strategic insights.

- IAMs were not designed to model the very fine details, e.g.
 - Electrical grid operation
 - Daily oil market price paths.

- IAMs are analogous to climate models in the sense that climate models don’t forecast weather.

- However, climate models are moving higher resolution, and so is GCAM.

- There is a big difference between highly-aggregated IAMs used for cost-benefit analysis and higher-resolution IAMs used for analysis of system dynamics
 - GCAM is a higher-resolution IAM
General Principles

- IAMs are:
 - Global in scope,
 - Include all anthropogenic sources of emissions,
 - Include some representation of the climate system.

- However, there is significant variation across models as to their:
 - Spatial resolution
 - Inclusion of gases and substances
 - Energy system detail
 - Representation of agriculture and land-use
 - Economic assumptions
 - Degree of foresight
 - Sophistication of the climate model component
IAMs are a diverse set of tools

- The diversity of IAMs is a reflection of the diversity of problems for which the models were designed to address.
 - What is the optimal climate policy?
 - Implications of policy regimes for technology choice?
 - How do policy, energy, the economy, land use and terrestrial carbon cycle interact?
 - How does climate policy affect energy security, energy access, and air pollution?

- IAMs are evolving to address new questions
 - How will emissions mitigation and climate impacts interact?
GCAM has a long history...

- GCAM was one of four models chosen to create the representative concentration pathways for the IPCC’s AR5.
- GCAM was one of three models used to create scenarios for the CCSP’s scenario analysis.
- GCAM has been a prominent tool for analysis in the Climate Change Technology Program.
- GCAM has participated in virtually every major climate/energy/economics assessment over the last 20 years:
 - Every EMF study on climate
 - Every IPCC assessment
- GCAM has been used for strategic planning by energy and other private companies.
- GCAM is now used by research institutions and governments internationally.
The Global Change Assessment Model

32 Region Energy/Economy Model

- GCAM is a **global integrated assessment model**
- GCAM links **Economic, Energy, Land-use, and Climate** systems
- Typically used to examine the effect of technology and policy on the economy, energy system, agriculture and land-use, and climate
- Technology-rich model
- Emissions of 24 greenhouse gases and short-lived species: \(\text{CO}_2, \text{CH}_4, \text{N}_2\text{O}, \) halocarbons, carbonaceous aerosols, reactive gases, sulfur dioxide.
- Runs through **2100 in 5-year time-steps**.
- Documentation available at: wiki.umd.edu/gcam
- There is also a GCAM Community Listserve.

283 Agriculture and Land Use Model
BEFORE WE START...
Everything included in this presentation is about the most recent version of GCAM (version 4.0 revision 5465).

I am only describing elements of the model that are in that core version. We do have research versions of GCAM that include other capabilities. These were discussed earlier in the week, but not this morning.
What’s new from the previous release

- **Regional resolution:**
 - We have updated to 32 regions in the energy-economic model and 283 regions in the agriculture and land use model.

- **Final calibration year:**
 - 2010 is now a historical year. 2015 is the first model period.

- **Base year non-CO\(_2\) emissions:**
 - We have updated to a more recent emissions inventory (EDGAR). Additionally, we have added more fluorinated gases to the model.

- **Updated transportation module:**
 - We are using a more detailed transportation module developed in collaboration with UC Davis.

- **Update Marginal Abatement Cost Curves for non-CO\(_2\) GHGs:**
 - We are now using EPA’s most recent estimates of abatement potential for non-CO\(_2\) s.

- **Ability to constrain GHGs added.**
What’s new from the previous release (continued)

► Other model changes:
 ■ We have developed an internal system for processing raw country-level data into GCAM input files. In the development of this system, some small changes were made to several sectors.
 ■ Also, we are no longer disaggregating USA electricity into load segments.

► Diagnostic package that generates a standard set of figures.

► Various clean-up tasks:
 ■ Change in the way afforestation policies are turned on.
 ■ Tracking/reporting carbon stocks.
 ■ LUC emissions calculation when converting from non-commercial to commercial forest.
 ■ Updated soil carbon emissions calculation.
 ■ Renewable resource calibration.
 ■ Improvements to the target finder.
 ■ Memory clean-up.
OVERVIEW OF GCAM
DETAILED MODEL DESCRIPTION
The Global Change Assessment Model
The Economy: Basic Assumptions

Population:
- Exogenously specified
- Does not change in response to policy, technology, etc.
- Current core model scenario assumes global population peaks in 2065 at roughly 9 billion people

GDP:
- Exogenously specified assumptions about labor productivity growth
- Does not change in response to policy, technology, etc.
- Current core model scenario assumes long-term labor productivity growth of approximately 1.5 percent per year in the developed world. Developing world growth is generally higher, with countries undergoing initially rapid growth which then slows toward the developed country levels over time.
The Economy: Basic Assumptions

Population

GDP
The Global Change Assessment Model

ENERGY SYSTEM
- Energy Supply
 - Coal, Gas, Oil
 - Renewables
 - Electricity
 - Hydrogen
- Energy Demand
 - Transportation
 - Buildings
 - Industry

Energy Markets
- Fossil fuel prices
- Electricity prices
- Hydrogen prices
- Bioenergy prices

CLIMATE SYSTEM

ECONOMY

AGRICULTURE AND LAND USE
Resources serve as inputs to conversion technologies to produce energy carriers such as electricity, liquid fuels, and hydrogen.

- For example, several types of solar technologies – CSP, central PV, rooftop PV – draw from the solar resource to produce electricity.

Exhaustible Resources in GCAM
- Coal
- Natural Gas
- Oil (conventional and unconventional)
- Uranium

Renewable Resources in GCAM
- Solar
- Wind (onshore and offshore combined into one)
- Geothermal
- Bioenergy
The Energy System: Resources: Conventional Oil

Note: There is an additional 90 ZJ of unconventional oil in GCAM 4.
Note: I have removed the highest grade of natural gas from these figures to make it easier to see. We have ~200 ZJ more natural gas available in the model.
The Energy System: Resources: Coal

Global Coal Supply

Regional Coal Supply

Exajoules

0 10000 20000 30000 40000 50000 60000 70000 80000

0 1 2 3 4 5 6 7 8 9

ZetaJoules

2010 $/GJ

USA Africa - Northern Africa - Western Brazil China EU-15 India Japan Middle East Russia South America - Northern South Asia Southeast Asia Argentina

Cent. America and Car. Europe, Non. EU Europe Non-EU
The Energy System: Structure

Resource Production
- Oil Production
- Bioenergy Production
- Coal Production
- N. Gas Production
- Uranium

Energy Transformation
- Liquids Refining
- Bioenergy Conversion
- Gas Processing
- Electric Power Generation
- Hydrogen

Final Energy Carriers
- Liquids Market
- Bioenergy Market
- Coal Market
- Natural Gas Market
- Hydrogen Market
- Electricity Market

End-Use
- Buildings Sector
- Industrial Sector
- Transport Sector
The Energy System: Structure

Purpose Grown Bioenergy:
- Production depends on land allocation and regional yield
- Land allocation depends on the profit rate of biomass AND all competing land uses
- Includes 1st and 2nd generation crops

Crop & Forestry Residues:
- Potential production depends on crop production
- Fraction harvested depends on the price of bioenergy; higher prices lead to more production
- Some amount of residue must remain on the field for erosion control

Municipal Solid Waste:
- Potential production depends on population and income
- Fraction used for bioenergy depends on the price of bioenergy; higher prices lead to more production

Note: We also model traditional bioenergy. However, it is not added to the bioenergy resource pool and is instead consumed directly by the buildings sector. Similarly, we model 1st generation bioenergy, but it is converted directly to ethanol or diesel and not added to the bioenergy resource pool.
The Energy System: Structure

Resource Production
- Oil Production
- Bioenergy Production
- Coal Production
- N. Gas Production
- Uranium

Energy Transformation
- Liquids Refining
 - Bioenergy Conversion
 - Gas Processing
- Electric Power Generation
- Hydrogen

Final Energy Carriers
- Liquids Market
- Bioenergy Market
- Coal Market
- Natural Gas Market
- Hydrogen Market
- Electricity Market

End-Use
- Buildings Sector
- Industrial Sector
- Transport Sector
Final energy sectors in GCAM consume several fuels:
- Electricity
- Liquid Fuels
- Coal
- Bioenergy
- Gaseous Fuels
- Hydrogen

Corresponding to each of these is a conversion sector that takes as inputs various resources.
- For example, liquid fuels are produced from bioenergy, conventional and unconventional oil, coal, and natural gas.

Conversion sectors can utilize a number of technologies, even for a single input fuel.
- Bioenergy-to-liquids, for example, can be produced through several different technologies, with and without CCS.
The Energy System: Structure
The Energy System: Electricity Generation

- Electric Power Generation
 - Refined Liquids
 - Bioenergy
 - Coal
 - Natural Gas
 - Nuclear
 - Hydro
 - Solar
 - Wind
 - Geothermal
We model 4 different categories of coal power plants:
- Existing coal plants
- Pulverized coal plants
- IGCC
- IGCC with CO$_2$ Capture and Storage (CCS)

Each power plant has a different efficiency, non-energy cost, and emissions factor.

Which technology is deployed depends on the trade-offs between emissions and other costs. For example, IGCC with CCS will only deploy in a climate policy scenario.
The Energy System: Technology Competition

A Probabilistic Approach

- Economic competition among technologies takes place at many sectors and levels.
- Assumes a distribution of realized costs due to heterogeneous conditions.
- Market share based on probability that a technology has the least cost for an application.
 - Avoids a “winner take all” result.
 - “Logit” specification.
The Energy System: Technology Competition

The equation for technology competition is:

\[S_i = \frac{\alpha_i c_i^\sigma}{\sum_j \alpha_j c_j^\sigma} \]

Source: Clarke and Edmonds (1993), McFadden (1974)

Change in technology shares when tech 1’s cost increases by 20%
The Energy System: Vintaging of Capital

- We assume that capital stock in certain sectors (for example, electric power generation and oil refining sectors) is long-lived.

- This means that a power plant or refinery built in one model period *may* still be in operation many time periods later.

- However, we do not assume that existing capital is always in operation. Once the variable cost exceeds the market price, we begin to shut down existing units. This often occurs when a carbon price is applied.
Onshore CO$_2$ storage capacity modeled at region level using supply curves

- Offshore CO$_2$ storage capacity is available to any region at a cost of $96/tCO$_2$ ($352/tC$)
The Energy System: Structure

Resource Production
- Oil Production
- Bioenergy Production
- Coal Production
- N. Gas Production
- Uranium

Energy Transformation
- Liquid Refining
- Bioenergy Conversion
- Gas Processing
- Electric Power Generation
- Hydrogen

Final Energy Carriers
- Liquids Market
- Bioenergy Market
- Coal Market
- Natural Gas Market
- Hydrogen Market
- Electricity Market

End-Use
- Buildings Sector
- Industrial Sector
- Transport Sector
We have detailed representations of transportation & buildings in all regions.
Per capita transportation service demands (measured in km/yr) are a function of income and the prices of services.
The choice among modes of transportation is a function of the cost of travel, the time it takes, and income.
The choice among fuels within a mode is a function of cost (including capital cost and the cost of fuel).
We track final energy by sector, mode, and fuel. It will differ by region depending on fuel costs, income, population, and preferences (calibrated in).
The Energy System: Energy Demand

- Liquids Market
- Bioenergy Market
- Coal Market
- Natural Gas Market
- Hydrogen Market
- Electricity Market
- Buildings Sector
- Industrial Sector
- Transport Sector
- Buildings Technologies
- Industrial Technologies
- Transport Technologies

We have detailed representations of transportation & buildings in all regions.
Future evolution of building energy use is shaped by...

- Residential and commercial floorspace
- Population, GDP, and exogenous per-capita floorspace satiation levels

![Per Capita Residential Floorspace](chart1.png)

![Total Building Floorspace](chart2.png)
Future evolution of building energy use is shaped by...

- Residential and commercial floorspace
- Levels of building service demands per unit floorspace
 - Climate, building shell conductivity, GDP, and exogenous satiation levels

Residential Heating

Residential Cooling

- USA
- Canada
- Russia
- Europe
- Oth. Lat. Amer.
- Brazil
- Sub-Sah. Afr.
- Other Asia
- Other Asia
- Pacific OECD
- India
- China
Future evolution of building energy use is shaped by...
- Residential and commercial floorspace
- Levels of building service demands per unit floorspace
- Fuel and technology choices by consumers
The Energy System: Structure

- Oil Production
- Bioenergy Production
- Coal Production
- N. Gas Production
- Uranium

- Liquids Refining
- Bioenergy Conversion
- Gas Processing
- Hydrogen

- Electric Power Generation
- Nuclear
- Hydro
- Solar
- Wind
- Geothermal

- Buildings Sector
- Industrial Sector
- Transport Sector

- Liquids Market
- Bioenergy Market
- Coal Market
- Natural Gas Market
- Hydrogen Market
- Electricity Market
These systems can get very complicated very quickly.
The Energy System: Calibration

- The current base year for the energy system is 2010.

- We use IEA energy balances as calibration data.

- The calibration procedure calculates “share weights” such that the IEA energy balances are reproduced.

- These share weights reflect unmeasured and non-economic influences on decision-making.
 - If a technology has low costs but nevertheless has low market share (e.g. coal furnaces), then the model will compute a low share weight. If this base-year share weight is applied to future periods, then the market share of the technology will remain low even if it remains a relatively low-cost option.

- In most cases, we retain these share weights in future years. In some cases (e.g. renewables in the electric sector), we have over-written them because we felt the information wasn’t relevant.
The Energy System: Results

Year.value.Global.FixedClimate.Final Energy Consumption by Sector

Year.value.Global.FixedClimate.Final Energy Consumption: Industry
Primary Energy Inputs to Industrial Electricity

- geothermal
- solar
- wind
- hydro
- biomass
- nuclear
- oil
- gas
- coal
- intensity
The Energy System: Results

Global Electricity Generation by Fuel

- Coal
- Coal with CCS
- Gas
- Gas with CCS
- Oil
- Oil with CCS
- Biomass
- Biomass with CCS
- Nuclear
- Geothermal
- Hydro
- Wind
- Solar
- CHP
- Energy reduction
The Energy System: Results

Global Primary Energy by Fuel

Primary Energy Consumption (EJ)

fuel
- a oil
- b natural gas
- c coal
- d biomass
- g wind
- i geothermal
- j traditional biomass
- energy reduction

Years:
- 2000
- 2025
- 2050
- 2075
- 2100
HALF TIME
The Global Change Assessment Model
The Agricultural System: Demand

- GCAM currently models supply and demand for 12 crops, 6 animal categories, and bioenergy:
 - Crops: corn, rice, wheat, sugar, oil crops (e.g., soybeans), other grains (e.g., barley), fiber (e.g., cotton), fodder (e.g., hay, alfalfa), roots & tubers, fruits & vegetables
 - Animals: beef, dairy, pork, poultry, sheep/goat, other
 - Forest: roundwood
 - Bioenergy: switchgrass, miscanthus, jatropha, willow, eucalyptus, corn ethanol, sugar ethanol, biodiesel (from soybeans and other oil crops)

- We account for both food and non-food demand, including animal feed.

- Demand is modeled at the 32 region level.
The Agricultural System: Demand

- Non-food, non-feed demand:
 - Base year demand for non-food, non-feed uses FAO statistics
 - Future demand:
 - Per capita demand for crops, animals, and forestry products is currently fixed.
 - Thus, demand grows proportional to population, regardless of income or price.

- Feed demand:
 - Base year demand for feed combines FAO statistics with data from the IMAGE model (PBL)
 - Future demand:
 - Depends on the growth in animal consumption, as well as the change in relative prices of feed options
 - Animal can either be grass-fed or grain-fed. The exact proportion of grass- vs. grain-fed depends on the price of pasture land as compared to the price of crops
 - Grain-fed animals can shift their diet as the relative prices of various crops change. However, the elasticity is relatively low to prevent dramatic shifts that may comprise an unsustainable diet.
Food demand:

- Base year demand for food uses FAO statistics.
- Future demand in the baseline is calibrated to match FAO projections of crop and meat demand through 2050. After 2050, we assume that per capita demand is constant.
- Meat demand in GCAM is price responsive. As the price of meat increases, meat demand will decline.
 - The current price elasticity is very low (~0.25). This is consistent with USDA data for the USA and Australia. Developing countries typically have more elastic demand, but our default assumption is very conservative.
- Crop demand is not price responsive.
The Agricultural System: Demand

Total Food Consumption

% of Calories from Meat
The Global Change Assessment Model

ENERGY SYSTEM

CLIMATE SYSTEM

ECONOMY

AGRICULTURE AND LAND USE

Agricultural Demand
- Crops
- Livestock
- Forest Products

Agricultural Supply
- Crops
- Livestock
- Forest Products
- Bioenergy

Agricultural Markets
- Crops prices
- Livestock prices
- Forest Product prices
- Bioenergy prices

Land Use & Land Cover
For each crop and region, we have started with a single production technology.

- The yield for this technology is calculated from GTAP/FAO statistics, by dividing total production in a region by land area.
- GCAM results are production per year, not per harvest. Thus, we use total physical crop land area to calculate yield and not harvested area. If a region actually harvests more than once a year, their “economic” yield (used by GCAM) will be larger than the actual physical yield.

We exogenously specify technical change for agricultural technologies.

- We use FAO projections through 2050.
- After 2050, we assume that yields will improve by 0.25% per year for all crops and regions.
The Agricultural System: Agricultural Productivity Growth

Wheat Yield (Index to 2010)

USA Yield (Index to 2010)
The Global Change Assessment Model
The world is divided into 283 regions
The Agricultural System: Regions
The Agricultural System: Regions

Monfreda et al. (2009)
283 Different AgLU Supply Regions
The world is divided into 283 regions.
Farmers allocate land across a variety of uses in order to maximize profit.
There is a distribution of profits for each land type across each of the 283 regions.
The actual share of land allocated to a particular use is the probability in which that land type has the highest profit.
The variation in profit rates is due to variation in the cost of production.
- As the area devoted to a particular land use expands, cost increases.
- Yield is fixed within each region for each crop management practice.
The Agricultural System: Nesting

- Land
 - Tundra
 - Rock, Ice, Desert
 - Arable Land
 - Urban

- Non-Pasture
 - Grass and Shrubs
 - Grass land
 - Shrub land
 - Crops
 - Corn, wheat, bioenergy, etc.
 - Other arable land
 - All Forests
 - Commercial Forest
 - Forest

- Pasture
 - Other Pasture
 - Intensively-Grazed Pasture

Gray = Exogenous
Green = Non-commercial
Red = Commercial

Ongoing developments: Including multiple management technologies.
While yield is fixed within each subregion, there is a distribution of yields across each of the 32 GCAM regions.
Currently, we calibrate to an average of 2008-2010 data. This is to avoid using an anomalous weather year as a benchmark.

During the AgLU calibration process, the model computes the average profit rate required to reproduce the base year land allocations. We assume that the difference between this profit and the observed profit \((\text{yield} \times (p - c))\) is a cost to production that also applies in the future.

Thus, if you have a region with a high crop yield, but low land allocation in the base year (e.g., Wheat in Alaska), the model assumes that there are some additional costs that must be considered when expanding its land area. As a result, that crop will continue to have a low share in the future in the absence of a technology or policy change.
The Agricultural System: Land Competition

Value of Land

Median Profit 2
Median Profit 1

[Graph showing the comparison of median profits with different values.]
The Agricultural System: Land Competition

\[S_i = \frac{(\alpha_i \pi_i)^\sigma}{\sum_j (\alpha_j \pi_j)^\sigma} \]

Source: Clarke and Edmonds (1993), McFadden (1974)

Change in land shares when land type 1’s profit increases by 20%
Elasticities can be computed at each point, but by design, there is not a constant elasticity relationship with respect to changes in profit.
The Agricultural System: Land Cover Data

- GCAM needs land cover by type (e.g., forest, grass, maize, wheat, etc.) for each region/AEZ combination in each historical year.

- We have similar methodologies in other sectors:
 - Population: IIASA, US Census
 - Energy: IEA, EIA, country studies
 - Agriculture: FAO, GTAP, MIRCA
 - Emissions: EDGAR, EPA, RCP
The Global Change Assessment Model
The Agricultural System: Supply

- Yield is exogenously calculated.
 - Base year derived from GTAP/FAO production and land area.
 - Yields increase over time based on exogenously specified technical change.

- Land area is endogenously calculated.
 - Each land type's share of area in its region is the probability its profit is the highest in that region.

- Supply = land * yield
The Agricultural System: Results

Beef Consumption by Region

- USA
- Southeast Asia
- South Korea
- South Asia
- South America_Southern
- South America_Northern
- South Africa
- Russia
- Pakistan
- Middle East
- Mexico
- Japan
- Indonesia
- India
- European Free Trade Association
- Europe_Non_EU
- Europe_Eastern
- EU-15
- EU-12
- Colombia
- China
- Central Asia
- Central America and Caribbean
- Canada
- Brazil
- Australia_NZ
- Argentina
- Africa_Western
- Africa_Southern
- Africa_Northern
- Africa_Eastern

Global Beef Feed

- Scavenging_Other
- Pasture_FodderGrass
- Imports
- FodderHerb_Residue
- FeedCrops
The Agricultural System: Results

Global Reference Land Use by Type

land allocation:
- urban
- crops
- pasture (grazed)
- forest (managed)
- biomass
- forest (unmanaged)
- shrubs
- grass/other pasture
- desert
The Global Change Assessment Model
While we can explain the energy and agricultural systems separately, these two systems cannot be separated in practice. Choices made in one sector affect outcomes in another sector.

This is true both in the real world and in GCAM. You cannot run the different components of the model separately.

GCAM currently has two means of linking the energy and agriculture systems:
- Bioenergy: supplied by the agricultural system, demanded by the energy system
- Fertilizer: supplied by the energy system, demanded by the agricultural system
We are modeling synthetic fertilizer production for use in the agricultural sector. We do not include non-agricultural uses of fertilizer or natural fertilizer.

Production by technology is from IEA.
Fertilizer Demand

- Consumption by country (and therefore region) are from FAO ResourceSTAT.

- Consumption by region is first downscaled to crops according to a dataset put together by the International Fertilizer Industry Association working in collaboration with the FAO, and then downscaled to AEZ on the basis of crop production.
GCAM tracks emissions for several gases and species

- CO₂, CH₄, N₂O, CF₄, C₂F₆, SF₆, HFC23, HFC32, HFC43-10mee, HFC125, HFC134a, HFC143a, HFC152a, HFC227ea, HFC236fa, HFC245fa, HFC365mfc, SO₂, BC, OC, CO, VOCs, NOx, NH₃

- We calculate CO₂ from fossil fuel & industrial uses, as well as from land-use change.

Each gas is associated with a specific activity and changes throughout the coming century if:

- The activity level changes
 - Increasing the activity increases emissions

- Pollution controls increase
 - As incomes rise, we assume that regions will reduce pollutant emissions

- A carbon price is applied
 - We use MAC curves to reduce the emissions of GHGs as the carbon price rises

Emissions are produced at a region level (32 regions for energy, 283 regions for agriculture & land-use).
Emissions: Base Year Emissions

► CO₂:
- Energy system: we read in carbon contents for all fuels (e.g., coal, gas, oil). These carbon contents are chosen so we match global emissions from CDIAC in the base year. These carbon contents are used to compute emissions in all years (including the base year).
- LUC: we read in carbon density, growth parameters, and historical land allocation and compute emissions in all years (including the base year).

► Non-CO₂:
- Base year emissions are calibrated to match the EDGAR* data set for most emissions (exceptions are BC & OC, where we still use RCP inventories). We use this data to calculate emissions factors (emissions per unit of activity) for all emissions sources. In some cases (e.g., electricity), we supplement EDGAR with EPA to get technology-specific emissions.

* Note: EDGAR only provides data through 2008. So, our final calibration year for non-CO₂ emissions is 2005.
First, we determine the total change in carbon stock for each land type and region.

\[\Delta C \text{ Stock} = [\text{Land Area } (t)] \times [\text{C density } (t)] - [\text{Land Area } (t-1)] \times [\text{C density } (t-1)] \]

Then, we allocate that change across time.

- If change in land area decreases the carbon stock (e.g., deforestation), then all carbon is released into the atmosphere instantaneously.

- If the change in land area increases the carbon stock (e.g., afforestation), then carbon accumulates slowly over time, depending on an exogenously specified mature age.
 - The mature age varies by land type and region.
First, we determine the total change in carbon stock for each land type and region.

\[\Delta C \text{ Stock} = [\text{Land Area (t)}] \cdot [\text{C density (t)}] - [\text{Land Area (t-1)}] \cdot [\text{C density (t-1)}] \]

Then, we allocate that change across time.

- Whether carbon stock increases or decreases, we use the same formula.
 \[\text{SoilCarbon}(t) = \text{SoilCarbon}(0) + \Delta \text{SoilCarbonStock}_{i,j} \cdot (1 - e^{-\lambda t}) \]

- The half life, \(\lambda \), varies by region.
- In general, colder regions have longer soil carbon half lives.
Emissions in the energy system can be driven by input (e.g., fuel consumed by a particular technology) or output (e.g., fuel produced by a particular technology).

Emissions information is technology-specific. As a result, different technologies that produce the same output can have different emissions per unit of activity.

For most gases and species, we model drivers of emissions in detail. However, for some F-gases, the driver data (e.g., fire extinguishers) depends only on GDP.
Emissions in the agricultural system can be driven by output (e.g., for crop production) or land area (e.g., for open burning).

Emissions information is crop and region specific in GCAM. However, inventory data is region specific, but not crop specific (or AEZ specific).
Fluorinated gas emissions are linked either to the size of the industrial sector (e.g., semiconductors) or to GDP (e.g., fire extinguishers). As those drivers change, emissions will change. Additionally, we include abatement options based on the EPA’s most recent MAC curves.

For HFC134a from cooling, we make additional adjustments to emissions factors in the developing regions to reflect their continued transition from CFCs to HFCs (see EPA report).
The Global Change Assessment Model

ENERGY SYSTEM
- **Energy Supply**
 - Coal, Gas, Oil
 - Renewables
 - Electricity
 - Hydrogen
- **Energy Demand**
 - Transportation
 - Buildings
 - Industry

ECONOMY
- **Regional GDP**
- **Agricultural Demand**
 - Crops
 - Livestock
 - Forest Products
- **Agricultural Supply**
 - Crops
 - Livestock
 - Forest Products
 - Bioenergy

OTHER MARKETS
- Emissions Permits
- Portfolio Standards

AGRICULTURE AND LAND USE
- Land Use and Land Use Change Emissions
- Land Use & Land Cover

CLIMATE SYSTEM
- Fossil and Industrial Emissions
- Other Markets
 - Fossil fuel prices
 - Electricity prices
 - Hydrogen prices
 - Bioenergy prices
Other Markets: Climate Policy

- **Carbon or GHG prices:**
 - Users can specify the price of carbon or GHGs directly
 - Emissions will vary depending on other scenario drivers

- **Emissions constraints:**
 - Users can specify the total amount of emissions (CO₂ or GHG)
 - Model will calculate the price of carbon needed to reach the constraint

- **Climate constraints:**
 - Users can specify a climate variable (e.g., concentration or radiative forcing) target for a particular year
 - Users determine whether that target can be exceeded prior to the target year
 - Model will adjust carbon prices in order to find the least cost path to reaching the target
 - (This type of policy increases model run time significantly)
We can impose constraints (lower & upper bounds) on energy consumption.
- The model will solve for the tax (upper bound) or subsidy (lower bound) required to reach the given constraint.
- Within an individual sector, these constraints can be share constraints (e.g., fraction of electricity that comes from solar power).
 - This allows us to model renewable portfolio standards and biofuels standards.
- Across sectors, these must be quantity constraints.
Other Markets: Land-Use Policy

► REDD:
 ■ In this policy, we set aside some land from economic competition. This land cannot be converted to crops, pasture, or any other land type.
 ■ Currently, this is the core assumption in GCAM when running a carbon policy.
 ● We have protected 90% of non-commercial ecosystems.

► Valuing carbon in land:
 ■ In this policy, we assume that land use change emissions are taxed at the same rate as fossil fuel and industrial emissions.
 ■ Land owners receive a subsidy proportional to their carbon content.

► Bioenergy constraints (upper or lower):
 ■ We can also constrain biomass to a particular level. This is implemented in GCAM as a tax or subsidy on bioenergy consumption. The tax/subsidy is adjusted until the constraint is met.

► Bioenergy taxes:
 ■ We can impose a tax on bioenergy that is linked to the carbon price.
Imposing a climate policy affects the cost of energy production for carbon-intensive fuels. This induces a shift toward lower emitting technologies.

Cost of Electricity Generation in China

- **coal (IGCC)**: Reference, Policy
- **coal (IGCC CCS)**: Reference, Policy
- **Gen_III**: Reference, Policy

Electricity Generation in China in 2050

- **Reference**: m Solar, l Wind, k Hydro, j Geothermal, i Nuclear, h Biomass w/CCS, g Biomass, f Oil w/CCS, e Oil, d Gas w/CCS, c Gas, b Coal w/CCS, a Coal
- **Tax ($25/tC in 2020)**: m Solar, l Wind, k Hydro, j Geothermal, i Nuclear, h Biomass w/CCS, g Biomass, f Oil w/CCS, e Oil, d Gas w/CCS, c Gas, b Coal w/CCS, a Coal
Under the default assumption in GCAM, 90% of non-commercial ecosystems are protected in GCAM. This means that they cannot be used for crop or bioenergy production.
GCAM can compute the cost of a climate policy endogenously.

The cost metric used is the area under the marginal abatement cost (MAC) curve. This area under the MAC curve is deadweight loss (i.e., the loss in producer and consumer surplus.)

Currently, we are not modeling this cost as affecting GDP in GCAM.
The Global Change Assessment Model
The Climate System: Approach

- GCAM uses MAGICC 5.3 to compute climate related outputs.
 - We have translated the original Fortran code into C++.
 - We adjust the computation of radiative forcing from black and organic carbon.

- Inputs:
 - GCAM passes emissions into MAGICC.
 - Fossil fuel & Industrial CO$_2$, Land-Use Change CO$_2$, CH$_4$, N$_2$O, SF$_6$, C$_2$F$_6$, CF$_4$, HFC125, HFC134a, HFC143a, HFC227ea, HFC245fa*, SO$_2$ in 3 aggregate regions, CO, NO$_x$, NMVOCs, BC, OC

- Outputs:
 - MAGICC computes concentrations and radiative forcing of all substances.
 - It also computes global mean temperature rise (both observed and equilibrium) and sea level rise.

* GCAM includes more HFCs than are included in MAGICC. We map missing gases to those with similar lifetimes based on GWP.
The Climate System: Results

CO₂ Concentration
- **Tax ($25/tC in 2020)**
- **Reference**

Global Mean Temperature Rise
- **Tax ($25/tC in 2020)**
- **Reference**
The Global Change Assessment Model

ENERGY SYSTEM
- Energy Supply
 - Coal, Gas, Oil
 - Renewables
 - Electricity
 - Hydrogen

- Energy Demand
 - Transportation
 - Buildings
 - Industry

ENERGY MARKETS
- Fossil fuel prices
- Electricity prices
- Hydrogen prices
- Bioenergy prices

ECONOMY
- Agricultural Demand
 - Crops
 - Livestock
 - Forest Products

- Agricultural Supply
 - Crops
 - Livestock
 - Forest Products
 - Bioenergy

Agricultural Markets
- Crops prices
- Livestock prices
- Forest Product prices
- Bioenergy prices

CLIMATE SYSTEM

LAND USE & LAND COVER

AGRICULTURE AND LAND USE

Resource Bases

Energy Conversion Technologies

Energy Demand Technologies

Agricultural Technologies

Land Characteristics
Trade: Assumptions

- We model Heckscher-Ohlin trade. We have not focused on bilateral trade.

- For many products, we assume that trade is free and global. These products include coal, gas, oil, bioenergy, food, and fiber.
 - However, we can have differences in regional prices by including an “adder” to account for transportation costs, etc.

- For other products, we assume that no interregional trade is allowed. These products include solar, wind, geothermal, meat, and dairy.
 - In this case, each region must produce enough to meet demand.
 - In some sectors (e.g., beef), we exogenously specify trade to match base year statistics. This trade is held constant over time.
Crude Oil Supply & Demand in 2050

- USA
- Taiwan
- Southeast Asia
- South Korea
- South Asia
- South America_Southern
- South America_Northern
- South Africa
- Russia
- Pakistan
- Middle East
- Mexico
- Japan
- Indonesia
- India
- European Free Trade Association
- Europe_Non_EU
- Europe_Eastern
- EU-15
- EU-12
- Colombia
- China
- Central Asia
- Central America and Caribbean
- Canada
- Brazil
- Australia_NZ
- Argentina
- Africa_Western
- Africa_Southern
- Africa_Northern
- Africa_Eastern

EJ/yr
We model large scale bioenergy systems

- Collection and Processing
 - Pelletizing important to increase the energy density of the fuel and facilitate transportation
 - Average cost to transport to local collection facility and pelletize of $2.18/GJ (2005$)
 - 85% of cost is in pelletizing
 - compare to $1.33/GJ for Coal (Edwards).
 - International transport cost of $0.31/GJ (2005$) added to all regions (assumes large ocean bulk carriers)

(Van Vliet, 2009, consistent with Wolf 2006)
The Solution Process: Algorithm

Step 1: Choose a vector of prices.

Step 2: Run GCAM.

Step 3: Test whether supply = demand for all markets.

If no

If yes

We’re done!

We use a combination of bracketing/bisection and Broyden’s method to update prices.

2 + 2 = 5?
The Solution Process: Results

Coal Price

Wheat Price

Tax ($25/tC in 2020)

Reference
FREQUENTLY ASKED QUESTIONS
Frequently Asked Questions

► Common question:
 ■ Why are some of the energy prices in GCAM lower than recent history or other projections?

► Answer:
 ■ We are a long-term equilibrium model. We do not attempt to capture short-term market fluctuations or market behavior.
 ■ In the case of oil, we do not sustain higher oil prices because the cost of substitutes (e.g., CTL, GTL) is lower than the current market price.
Frequently Asked Questions

- **Common question:**
 - Does GCAM include foresight?

- **Answer:**
 - For long-term investment decisions, we assume that decision-makers think about the future. That is, they may consider the costs and profits over the full lifetime of an electricity generation unit before building.
 - However, we are myopic in that we use current prices when making these decisions.
 - Decision-makers do not know future prices!

Common question:
- Does GCAM include climate change impacts?

Answer:
- We do have several studies including impacts. In most cases the model is equipped to estimate the effect of climate change impacts easily (e.g., building energy demand, agricultural yields). All that is needed is an input data set.
- No, at least not in the core model.

Source: Calvin et al. (2013). Implications of simultaneously mitigating and adapting to climate change: initial results using GCAM. *Climatic Change* 117 (3).
Common question:
- Does the GCAM reference scenario include other climate and energy policies?

Answer:
- To the extent that these exist in the base year, they will be calibrated into the GCAM reference scenario.
- However, we do not explicitly include any climate or energy policies in the core reference scenario.
Frequently Asked Questions

Common question:
- Where do your population estimates come from?

Answer:
- We use an older version of UN’s medium population through 2050, then IIASA technogarden post-2050. We update the USA population to be consistent with Census projections.
- Population in the core is similar to the UN medium or SSP2 population estimates.
Common question:
- Does GCAM include shale gas?

Answer:
- Yes, GCAM includes conventional and unconventional resources of natural gas.
- However, these are currently aggregated into a single resource supply curve, so you cannot determine how much shale gas is produced in a given scenario.
- We are working on separating shale gas from other types of gas.
Common question:
- Does GCAM optimize?

Answer:
- Not exactly.
- GCAM is a market equilibrium model, so it adjusts prices until supplies and demands are equal.
- However, GCAM assumes that producers maximize profit and consumers minimize cost.
- And, under certain conditions, welfare economics tells us that market equilibria are (Pareto) optimal.
- Also, as previously stated, we are not intertemporally optimizing.
QUESTIONS?